Solveeit Logo

Question

Question: A sphere is rotating between two rough inclined walls as shown in figure (1). Coefficient of frictio...

A sphere is rotating between two rough inclined walls as shown in figure (1). Coefficient of friction between each wall and the sphere is 1/3. If f1 and f2 be the friction forces at P and Q. Then f1f2\frac { \mathrm { f } _ { 1 } } { \mathrm { f } _ { 2 } } is –

A

43\frac { 4 } { \sqrt { 3 } } + 1

B

13\frac { 1 } { \sqrt { 3 } } + 2

C

12\frac { 1 } { 2 } + 3\sqrt { 3 }

D

1 + 2 3\sqrt { 3 }

Answer

43\frac { 4 } { \sqrt { 3 } } + 1

Explanation

Solution

Let µ be the friction coefficient between sphere and each wall. Free body diagram of sphere is

Net force on the sphere in horizontal direction is zero.

\ N1 cos 600 + µ N2 cos 600 = N2 cos 30º + µ N1 cos 300

or N1 + µN2 = 3\sqrt { 3 } (N2 + µN1)

or N1 (1 – 3\sqrt { 3 } µ) = N2 ( 3\sqrt { 3 } – µ)

\ N1N2\frac { N _ { 1 } } { N _ { 2 } } = 3μ13μ\frac { \sqrt { 3 } - \mu } { 1 - \sqrt { 3 } \mu }

Substituting µ = 13\frac { 1 } { 3 } we get,

N1N2\frac { N _ { 1 } } { N _ { 2 } } = 313133\frac { \sqrt { 3 } - \frac { 1 } { 3 } } { 1 - \frac { \sqrt { 3 } } { 3 } } = 33133\frac { 3 \sqrt { 3 } - 1 } { 3 - \sqrt { 3 } } = 1 + 43\frac { 4 } { \sqrt { 3 } }

Now f1f2\frac { \mathrm { f } _ { 1 } } { \mathrm { f } _ { 2 } } = μN1μN2\frac { \mu \mathrm { N } _ { 1 } } { \mu \mathrm { N } _ { 2 } } = 1 + 43\frac { 4 } { \sqrt { 3 } }