Solveeit Logo

Question

Question: A sphere impinges directly on a similar sphere at rest. If the coefficient of restitution is \(\frac...

A sphere impinges directly on a similar sphere at rest. If the coefficient of restitution is 12\frac{1}{2}, the velocities after impact are in the ratio

A

1 : 2

B

2 : 3

C

1 : 3

D

3 : 4

Answer

1 : 3

Explanation

Solution

From principle of conservation of momentum ,

mv1+mv1=mu1+mu1mv_{1} + m^{'}v_{1}^{'} = mu_{1} + m^{'}u_{1}^{'} ......(i)

From Newton's rule for relative velocities before and after impact.

v1v1=e(u1u1)v_{1} - v_{1}^{'} = - e(u_{1} - u_{1}^{'}) ......(ii)

Here m=mm = m^{'}, e=12e = \frac{1}{2} and let u1=0u_{1}^{'} = 0

Then from (i) mv1+mv1=mu1mv_{1} + mv_{1}^{'} = mu_{1} or v1+v1=u1v_{1} + v_{1}^{'} = u_{1} ......(iii)

From (ii), v1v1=12u1v_{1} - v_{1}^{'} = \frac{- 1}{2}u_{1} .......(iv)

Adding (iii) and (iv) , 2v1=12u12v_{1} = \frac{1}{2}u_{1} or R=u2hg=(ucosθ)×tR = u\sqrt{\frac{2h}{g}} = (u\cos\theta) \times t ......(v)

From (iii) and (v), v1=u114u1=34u1v_{1}^{'} = u_{1} - \frac{1}{4}u_{1} = \frac{3}{4}u_{1}. Hence v1:v1=1:3v_{1}:v_{1}^{'} = 1:3.