Solveeit Logo

Question

Question: A sphere contracts in volume by 0.01%, when taken to the bottom of sea 1 km deep. The bulk modulus o...

A sphere contracts in volume by 0.01%, when taken to the bottom of sea 1 km deep. The bulk modulus of the material of the sphere is (Given density of sea water may be taken as1.0×103 kg m3).1.0 \times \text{1}\text{0}^{3}\text{ kg }\text{m}^{- 3}).

A

4.9×1010 N m24.9 \times \text{1}\text{0}^{\text{10}}\text{ N }\text{m}^{- 2}

B

9.8×1010 N m29.8 \times \text{1}\text{0}^{\text{10}}\text{ N }\text{m}^{- 2}

C

4.9×109 N m24.9 \times \text{1}\text{0}^{9}\text{ N }\text{m}^{- 2}

D

9.8×109 N m29.8 \times \text{1}\text{0}^{9}\text{ N }\text{m}^{- 2}

Answer

9.8×1010 N m29.8 \times \text{1}\text{0}^{\text{10}}\text{ N }\text{m}^{- 2}

Explanation

Solution

: Here, ΔVV=0.01100,h=1km=103m\frac{\Delta V}{V} = \frac{0.01}{100},h = 1km = 10^{3}m

ρ=1.0×103kgm3\rho = 1.0 \times 10^{3}kgm^{- 3}

p=hρg=103×1×103×9.8p = h\rho g = 10^{3} \times 1 \times 10^{3} \times 9.8

=9.8×106Nm2= 9.8 \times 10^{6}Nm^{- 2}

B=PΔV/V=9.8×106×1000.01\therefore B = \frac{P}{\Delta V/V} = \frac{9.8 \times 10^{6} \times 100}{0.01}

=9.8×1010Nm2= 9.8 \times 10^{10}Nm^{- 2}