Solveeit Logo

Question

Physics Question on radiation

A sphere and a cube of same material and same volume are heated upto same temperature and allowed to cool in the same surroundings. The ratio of the amounts of radiations emitted will be

A

1:01

B

4π3:1\frac{4\pi}{3}:1

C

(π6)1/3:1\left(\frac{\pi}{6}\right)^{1/3}:1

D

12(4π3)2/3:1\frac{1}{2}\left(\frac{4\pi}{3}\right)^{2/3}:1

Answer

(π6)1/3:1\left(\frac{\pi}{6}\right)^{1/3}:1

Explanation

Solution

According to Stefen Boltzmann law, Q=σAt(T4T04)Q = \sigma \,A\,t\left(T^{4}-T_{0}^{4}\right) If T, T0,σT_{0}, \sigma and t are same for both bodies. Then, QsphereQcube=AsphereAcube=4πr26a2...(i)\Rightarrow\, \frac{Q_{sphere}}{Q_{cube}}=\frac{A_{sphere}}{A_{cube}}=\frac{4\pi r^{2}}{6a^{2}}\quad\quad\quad...\left(i\right) Given, Volume of sphere = Volume of cube 43πr3=a3\Rightarrow\quad \frac{4}{3}\pi r^{3}=a^{3} a=r(43π)1/3\Rightarrow\,a = r\left(\frac{4}{3}\pi\right)^{1/3} Substituting the value of a in equation (i), we get \frac{Q_{sphere}}{Q_{cube}}=\frac{4\pi r^{2}}{6a^{2}}=\frac{4\pi r^{2}}{6\left\\{\left(\frac{4}{3}\pi\right)^{1/3}r\right\\}^{2}} =4πr26(43π)1/3r2=(π6)1/3:1=\frac{4\pi r^{2}}{6\left(\frac{4}{3}\pi\right)^{1/3} r^{2}}=\left(\frac{\pi}{6}\right)^{1/3} :1