Solveeit Logo

Question

Question: A spherical capacitor is made of two conducting spherical shells of radii a and b. The space between...

A spherical capacitor is made of two conducting spherical shells of radii a and b. The space between the shells is filled with a dielectric of dielectric constant K upto a radius c as shown in figure (31-E27).

Answer

The capacitance of the spherical capacitor is: C=4πϵ01K(1a1c)+(1c1b)C = \frac{4\pi \epsilon_0}{\frac{1}{K}\left(\frac{1}{a} - \frac{1}{c}\right) + \left(\frac{1}{c} - \frac{1}{b}\right)} This can also be written in a simplified form as: C=4πϵ0Kabcb(ca)+Ka(bc)C = \frac{4\pi \epsilon_0 Kabc}{b(c-a) + Ka(b-c)} or C=4πϵ0Kabcbcab+KabKacC = \frac{4\pi \epsilon_0 Kabc}{bc - ab + Kab - Kac}

Explanation

Solution

The spherical capacitor is divided into two regions:

  • Region 1: arca \le r \le c, filled with dielectric of constant K.
  • Region 2: crbc \le r \le b, filled with vacuum (ϵr=1\epsilon_r = 1).

Assume charge +Q+Q on the inner shell and Q-Q on the outer shell. The electric field in Region 1 is E1=Q4πKϵ0r2E_1 = \frac{Q}{4\pi K \epsilon_0 r^2} and in Region 2 is E2=Q4πϵ0r2E_2 = \frac{Q}{4\pi \epsilon_0 r^2}.

The potential difference VV between the shells is calculated by integrating the electric field from the inner shell (radius aa) to the outer shell (radius bb): V=VaVb=abEdr=acE1dr+cbE2drV = V_a - V_b = \int_a^b E dr = \int_a^c E_1 dr + \int_c^b E_2 dr.

Evaluating the integrals: acQ4πKϵ0r2dr=Q4πKϵ0[1r]ac=Q4πKϵ0(1a1c)\int_a^c \frac{Q}{4\pi K \epsilon_0 r^2} dr = \frac{Q}{4\pi K \epsilon_0} \left[-\frac{1}{r}\right]_a^c = \frac{Q}{4\pi K \epsilon_0} \left(\frac{1}{a} - \frac{1}{c}\right) cbQ4πϵ0r2dr=Q4πϵ0[1r]cb=Q4πϵ0(1c1b)\int_c^b \frac{Q}{4\pi \epsilon_0 r^2} dr = \frac{Q}{4\pi \epsilon_0} \left[-\frac{1}{r}\right]_c^b = \frac{Q}{4\pi \epsilon_0} \left(\frac{1}{c} - \frac{1}{b}\right)

The total potential difference is the sum of these two parts: V=Q4πKϵ0(1a1c)+Q4πϵ0(1c1b)V = \frac{Q}{4\pi K \epsilon_0} \left(\frac{1}{a} - \frac{1}{c}\right) + \frac{Q}{4\pi \epsilon_0} \left(\frac{1}{c} - \frac{1}{b}\right) V=Q4πϵ0[1K(1a1c)+(1c1b)]V = \frac{Q}{4\pi \epsilon_0} \left[ \frac{1}{K}\left(\frac{1}{a} - \frac{1}{c}\right) + \left(\frac{1}{c} - \frac{1}{b}\right) \right]

The capacitance CC is given by C=QVC = \frac{Q}{V}. C=4πϵ01K(1a1c)+(1c1b)C = \frac{4\pi \epsilon_0}{\frac{1}{K}\left(\frac{1}{a} - \frac{1}{c}\right) + \left(\frac{1}{c} - \frac{1}{b}\right)}