Solveeit Logo

Question

Mathematics Question on Conditional Probability

A speaks truth in 75% and B in 80% of the cases. In what percentage of cases are they likely to contradict each other narrating the same incident ?

A

0.35

B

0.45

C

0.15

D

0.05

Answer

0.35

Explanation

Solution

P(A)=75100=34,P(B)=80100=45P\left(A\right) = \frac{75}{100} = \frac{3}{4}, P\left(B\right) = \frac{80}{100}= \frac{4}{5} P(Aˉ)=1P(A)\Rightarrow P\left(\bar{A} \right) = 1 -P\left(A\right) and P(Bˉ)=1P(B)P\left(\bar{B}\right) = 1 - P\left(B\right) P(Aˉ)=134=14\Rightarrow P\left(\bar{A} \right)= 1 - \frac{3}{4} = \frac{1}{4} and P(Bˉ)=145=15P\left(\bar{B} \right) = 1 - \frac{4}{5} = \frac{1}{5} Now, prob. (contradict to each other) =P(ABˉorAˉB)=P(ABˉ)+P(AˉB)= P\left(A \bar{B} or \bar{A }B\right)=P\left(A \bar{B} \right) + P\left(\bar{A} B\right) =P(A)P(Bˉ)+P(Aˉ)P(B)=34.15+14.45 = P\left(A\right)P\left(\bar{B} \right) + P\left(\bar{A} \right) P\left(B\right) = \frac{3}{4} . \frac{1}{5} + \frac{1}{4} . \frac{4}{5} P(ABˉorAˉB)=720\Rightarrow P\left(A\bar{B} or \bar{A} B\right) = \frac{7}{20} \therefore % of cases are A and B likely to contradict each other = \frac{7}{20}\times 100 =35%