Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

A space vector makes the angles 150150^\circ and 6060^\circ with the positive direction of XX - and YY-axis. The angle made by the vector with the positive direction of ZZ-axis is .............

A

180180^\circ

B

120120^\circ

C

9090^\circ

D

6060^\circ

Answer

9090^\circ

Explanation

Solution

We know that, the condition when a space vector makes the angles α,β\alpha, \beta and γ\gamma with the positive direction of x,yx, y and zz -axes respectively is
cos2α+cos2β+cos2γ=1\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1...(i)
Given that, α=150,β=60,γ=?\alpha=150^{\circ}, \beta=60^{\circ}, \gamma=?
From Eq (i), cos2150+cos260+cos2γ=1\cos ^{2} 150^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} \gamma=1
(sin260+cos260)+cos2γ=1\left(\sin ^{2} 60^{\circ}+\cos ^{2} 60^{\circ}\right)+\cos ^{2} \gamma=1
1+cos2γ=11+\cos ^{2} \gamma=1
cos2γ=0\Rightarrow \cos ^{2} \gamma=0
cosγ=0=cos90\Rightarrow \cos \gamma=0=\cos 90^{\circ}
γ=90\Rightarrow \gamma=90^{\circ}