Solveeit Logo

Question

Question: A source \(S_{1}\)is producing \(10^{15}\)photons per second of wavelength 5000Å. Another source\(S_...

A source S1S_{1}is producing 101510^{15}photons per second of wavelength 5000Å. Another sourceS2S_{2}is producing 1.02×10151.02 \times 10^{15}Photons per second of wavelength 5100Å. Then, (power of S2S_{2})/(power of S1S_{1})is equal to:

A

1.00

B

1.02

C

1.04

D

0.98

Answer

1.00

Explanation

Solution

: for a source S1S_{1}

Wavelength λ1=5000A˚\lambda_{1} = 5000Å

Number of photons emitted per second N1=1015N_{1} = 10^{15}

Energy of each photon E1=hcλ1E_{1} = \frac{hc}{\lambda_{1}}

Power of source S1S _ { 1 } p1=E1N1=N1hcλ1p_{1} = E_{1}N_{1} = \frac{N_{1}hc}{\lambda_{1}}

for a source S2S_{2}

Wavelength λ2=5100A˚\lambda_{2} = 5100Å

Number of photons emitted per second N2=1.02×1015N_{2} = 1.02 \times 10^{15}

Energy of each photon,E2=hcλ2E_{2} = \frac{hc}{\lambda_{2}}

Power of source S2,S_{2},

p2=E2N2=N2hcλ2p_{2} = E_{2}N_{2} = \frac{N_{2}hc}{\lambda_{2}}

powerofS2powerofS1=p2p1=N2hcλ2N1hcλ1=N2λ1N1λ2\therefore\frac{powerofS_{2}}{powerofS_{1}} = \frac{p_{2}}{p_{1}} = \frac{N_{2}hc}{\frac{\lambda_{2}}{\frac{N_{1}hc}{\lambda_{1}}}} = \frac{N_{2}\lambda_{1}}{N_{1}\lambda_{2}}

=(1.02×1015photons/s)×(5000×1010)(1015photons/s)×(5100×1010)=5151=1= \frac{(1.02 \times 10^{15}photons/s) \times (5000 \times 10^{- 10})}{(10^{15}photons/s) \times (5100 \times 10^{- 10})} = \frac{51}{51} = 1