Question
Question: A sound of intensity I is greater by 3.0103 dB from another sound of intensity \[10{\text{ }}nW\,c{m...
A sound of intensity I is greater by 3.0103 dB from another sound of intensity 10 nWcm−2. The absolute value of the intensity of sound level I in Wm−2is
A.2.5×10−4 B.2×10−4 C.2.0×10−2 D.2.5×10−2Explanation
Solution
Loudness of sound with intensity is given by 10log10−12I
Formula used:
B=10log10−12I
Where,
{I_2} = {10_n},W,c{m^{ - 2}} \\
= 10 \times {10^{ - 9}}\dfrac{W}{{{{10}^{ - 4}}{m^2}}} \\
= {10^{ - 4}},10{m^{ - 2}} \\
\\
\Rightarrow {B_1} = 3.0103 + {B_2} \\
\Rightarrow 10\log \dfrac{I}{{{{10}^{ - 12}}}} = 3.0103 + 80 \\
\Rightarrow \log \dfrac{I}{{{{10}^{ - 12}}}} = 8.30103 \\
\Rightarrow \dfrac{I}{{{{10}^{ - 12}}}} = {10^{8.30103}} \\
\Rightarrow I = {10^{ - 12}} \times {10^{8.30103}} \\
\Rightarrow I = 2 \times {10^{ - 4}}\dfrac{W}{{{m^2}}} \\