Solveeit Logo

Question

Question: A solution of the equation \(\tan ^ { - 1 } ( 1 + x )\) \(+ \tan ^ { - 1 } ( 1 - x )\) \(= \frac ...

A solution of the equation tan1(1+x)\tan ^ { - 1 } ( 1 + x ) +tan1(1x)+ \tan ^ { - 1 } ( 1 - x ) =π2= \frac { \pi } { 2 } is .

A

x=1x = 1

B

x=1x = - 1

C

x=0x = 0

D

x=πx = \pi

Answer

x=0x = 0

Explanation

Solution

tan1(1+x)+tan1(1x)=π2\tan ^ { - 1 } ( 1 + x ) + \tan ^ { - 1 } ( 1 - x ) = \frac { \pi } { 2 }

tan1(1+x)=π2tan1(1x)\tan ^ { - 1 } ( 1 + x ) = \frac { \pi } { 2 } - \tan ^ { - 1 } ( 1 - x )

tan1(1+x)=cot1(1x)\tan ^ { - 1 } ( 1 + x ) = \cot ^ { - 1 } ( 1 - x )

tan1(1+x)=tan1(11x)\tan ^ { - 1 } ( 1 + x ) = \tan ^ { - 1 } \left( \frac { 1 } { 1 - x } \right)

1+x=11x1x2=1x=01 + x = \frac { 1 } { 1 - x } \Rightarrow 1 - x ^ { 2 } = 1 \Rightarrow x = 0.