Question
Question: A solution of \[HCl\] has a\[pH = 5\]. If \[1mL\] of it is diluted to \[1\;litre\], what will be the...
A solution of HCl has apH=5. If 1mL of it is diluted to 1litre, what will be the pH of the resulting solution?
Solution
As per given when HCl is diluted to the solution then decrease its concentration and keeps the amount ofHCl constant, but increases the total amount of solution, here in solution when the acid solution is diluted, then we can obtain the Concentration of the dilute solution by using the formula - M2×V2=M1×V1 and after that we will calculate the pH of resulting solution.
Complete step by step answer: All acids have a pH in the acid range, then the value is below 7. When HCl is added to the solution, then the solution is acidic with pH is less than 7.
Now we have calculated the molarity of diluted solution, by using the formula
M2=V2M1 × V1
where
M1=Concentration in molarity (moles/Liters) of the concentrated solution
V1= Volume of the concentrated solution,
M2= Concentration in molarity of the dilute solution (after more solvent has been added).
V2= Volume of the dilute solution.
First we find M2, then we determine the pH of resulting solution
given,
A solution of HCl has pH=5
As we know , pH is the negative logarithm of the hydrogen ion concentration of a solution.
It is expressed as: pH =− log [H+]
where [H+] is the concentration of the hydrogen ion in the solution.
pH = − log [H+].
−log [H+]=10−5
[H+]=10−5
therefore the given acid, {M_1} = $$$$\;{10^{ - 5}}
Given, V1= 1ml
V2= 1L = 1000L
This will give the hydronium ion concentration obtained by the ionization of HCl
M2=V2M1 × V1
Now putting the values
=100010−5 × 1 =10−8M
since the value obtained from hydronium ion concentration from HCl is very small so we have to consider the contribution of water.
Since [H+]<10−7 ,
so let, [H30+]and[OH]+ = x
we know that [H30+]. [OH + ]=10−14( x + 10−8).(x)
The equation we get pH=− log[10.5 ×10−8]
Solving the equation using the formulae 2a−b+b2−4ac
Now we get, = 9.5 × 10−8M
therefore [H3O+]=9.5 ×10−8 M
Total =[H3O+]+[H+]=(9.5 ×10−8 M+ 10−8)
= (9.5 + 1)×10−8
⇒ = (10.5×10−8)
Now we find pHof resulting solution
pH=− log[10.5 ×10−8]
By solving log we get,
pH=6.9586
Note: In diluting an acidic solution the solution becomes less acidic, its pH increases and approaches 7 and dilution of basic solution becomes less basic, its pH decreases and approaches 7. The solution becomes neutral in nature.