Question
Question: A solution of differential equation (sec2 y)dy/dx+ 2x tan y = x3 is...
A solution of differential equation (sec2 y)dy/dx+ 2x tan y = x3 is
A
2tany=c.e−x2+x2−1
B
tany=ce−x2+x2−1
C
tany=cex2+x2−1
D
None of these
Answer
2tany=c.e−x2+x2−1
Explanation
Solution
sec2udxdy+2xtany=x3
Put tan y = z ⇒ sec2 ydxdy=dxdz
Hence, given equation becomes, dxdz+2x.z=x3
I.F. =e∫2xdx=ex2
∴ Solution is z.ex2=∫x3ex2dx=21∫tetdt
Let t=x2⇒dt=2xdx
⇒ tanyex2=21[t.et−et)+k
⇒ tany=ke−x2+2e−x2.ex2(x2−1)
⇒2 tany=ce−x2+x2−1.