Solveeit Logo

Question

Question: A solution of differential equation (sec2 y)dy/dx+ 2x tan y = x3 is...

A solution of differential equation (sec2 y)dy/dx+ 2x tan y = x3 is

A

2tany=c.ex2+x212\tan y = c.e^{- x^{2}} + x^{2} - 1

B

tany=cex2+x21\tan y = ce^{- x^{2}} + x^{2} - 1

C

tany=cex2+x21\tan y = ce^{x^{2}} + x^{2} - 1

D

None of these

Answer

2tany=c.ex2+x212\tan y = c.e^{- x^{2}} + x^{2} - 1

Explanation

Solution

sec2udydx+2xtany=x3\sec^{2}u\frac{dy}{dx} + 2x\tan y = x^{3}

Put tan y = z \Rightarrow sec2 ydydx=dzdxy\frac{dy}{dx} = \frac{dz}{dx}

Hence, given equation becomes, dzdx+2x.z=x3\frac{dz}{dx} + 2x.z = x^{3}

I.F. =e2xdx=ex2e^{\int_{}^{}{2xdx}} = e^{x^{2}}

\therefore Solution is z.ex2=x3ex2dx=12tetdtz.e^{x^{2}} = \int_{}^{}{x^{3}e^{x^{2}}}dx = \frac{1}{2}\int_{}^{}{te^{t}}dt

Let t=x2dt=2xdxt = x^{2} \Rightarrow dt = 2xdx

\Rightarrow tanyex2=12[t.etet)+k\tan ye^{x^{2}} = \frac{1}{2}\lbrack t.e^{t} - e^{t}) + k

\Rightarrow tany=kex2+ex2.ex22(x21)\tan y = ke^{- x^{2}} + \frac{e^{- x^{2}}.e^{x^{2}}}{2}(x^{2} - 1)

\Rightarrow2 tany=cex2+x21.\tan y = ce^{- x^{2}} + x^{2} - 1.