Solveeit Logo

Question

Question: A solution \[\left( {x,y} \right)\] of the system of equations \[x - y = \dfrac{1}{3}\] and \[{\cos ...

A solution (x,y)\left( {x,y} \right) of the system of equations xy=13x - y = \dfrac{1}{3} and cos2(πx)sin2(πy)=12{\cos ^2}\left( {\pi x} \right) - {\sin ^2}\left( {\pi y} \right) = \dfrac{1}{2} is given by
A) 23,13\dfrac{2}{3},\dfrac{1}{3}
B) 76,16\dfrac{7}{6},\dfrac{1}{6}
C) 136,116\dfrac{{13}}{6},\dfrac{{11}}{6}
D) 16,56\dfrac{1}{6},\dfrac{5}{6}

Explanation

Solution

To solve this we can use the formula cos2Asin2B=cos(A+B).cos(AB){\cos ^2}A - {\sin ^2}B = \cos \left( {A + B} \right).\cos \left( {A - B} \right). Here A=πxA = \pi x and B=πyB = \pi y. So ABA - B will be π(xy)\pi \left( {x - y} \right) substitute the value of xy=13x - y = \dfrac{1}{3} in this. In this way you will obtain the value of cos(A+B)\cos \left( {A + B} \right). Use cos(A+B)\cos \left( {A + B} \right) function to arrive at the correct answer among the given options.

Complete step by step solution:
Given: xy=13x - y = \dfrac{1}{3},
cos2(πx)sin2(πy)=12{\cos ^2}\left( {\pi x} \right) - {\sin ^2}\left( {\pi y} \right) = \dfrac{1}{2}
We know that cos2Asin2B=cos(A+B).cos(AB){\cos ^2}A - {\sin ^2}B = \cos \left( {A + B} \right).\cos \left( {A - B} \right) assuming A=πxA = \pi x and B=πyB = \pi y we get

cos2(πx)sin2(πy)=cos(πx+πy)cos(πxπy) 12=cos[π(x+y)]cos[π(xy)] 12=cos[π(x+y)]cos[π(13)] cos[π(x+y)]=12cosπ3=1212=1 cos[π(x+y)]=1  {\cos ^2}\left( {\pi x} \right) - {\sin ^2}\left( {\pi y} \right) = \cos \left( {\pi x + \pi y} \right)\cos \left( {\pi x - \pi y} \right) \\\ \Rightarrow \dfrac{1}{2} = \cos \left[ {\pi \left( {x + y} \right)} \right]\cos \left[ {\pi \left( {x - y} \right)} \right] \\\ \Rightarrow \dfrac{1}{2} = \cos \left[ {\pi \left( {x + y} \right)} \right]\cos \left[ {\pi \left( {\dfrac{1}{3}} \right)} \right] \\\ \Rightarrow \cos \left[ {\pi \left( {x + y} \right)} \right] = \dfrac{1}{{\dfrac{2}{{\cos \dfrac{\pi }{3}}}}} = \dfrac{1}{{\dfrac{{\dfrac{2}{1}}}{2}}} = 1 \\\ \Rightarrow \cos \left[ {\pi \left( {x + y} \right)} \right] = 1 \\\

Let x+y=nx + y = n
Then cosnπ=1\cos n\pi = 1
xy=13x - y = \dfrac{1}{3} (where nn is an integer)

2x=2n+13 x=(n+16) y=2nx=2nn16 y=n16 \Rightarrow 2x = 2n + \dfrac{1}{3} \\\ \Rightarrow x = \left( {n + \dfrac{1}{6}} \right) \\\ \Rightarrow y = 2n - x = 2n - n - \dfrac{1}{6} \\\ \Rightarrow y = n - \dfrac{1}{6} \\\

Putting

(x,y)=(x,y)(16,16) n=1 (x,y)=(46,56) n=2  \left( {x,y} \right) = \left( {x,y} \right) \equiv \left( {\dfrac{1}{6}, - \dfrac{1}{6}} \right) \\\ n = 1 \\\ \Rightarrow \left( {x,y} \right) = \left( {\dfrac{4}{6},\dfrac{5}{6}} \right) \\\ n = 2 \\\

(x,y)(136,116)\Rightarrow \left( {x,y} \right) \equiv \left( {\dfrac{{13}}{6},\dfrac{{11}}{6}} \right) (Only this option matches)

The correct answer is option (c) (136,116)\left( {\dfrac{{13}}{6},\dfrac{{11}}{6}} \right)

Note:
In multiple questions like these it might not be possible to obtain the correct solution only from the question. You may require to analyze the options to arrive at the correct answer. Similar questions might be asked that requires the knowledge of other trigonometric equations.