Solveeit Logo

Question

Chemistry Question on Solutions

A solution is prepared by dissolving 10g10 \,g of a non-volatile solute (molar mass, Mgmol1'M^{\prime} g mol ^{-1} ) in 360g360\, g of water. What is the molar mass in gmol1g\, mol ^{-1} of solute if the relative lowering of vapour pressure of solution is 5×1035 \times 10^{-3} ?

A

199

B

99.5

C

299

D

149.5

Answer

99.5

Explanation

Solution

Given, Mass of solute (wB)=10g\left(w_{B}\right)=10 \,g Molar mass of solute (MB)=MB\left(M_{B}\right)=M_{B} Mass of solvent (wA)=360g\left(w_{A}\right)=360 \,g Relative lowering in vapour pressure of solution =5×103=5 \times 10^{-3} Molar mass of water (MA)=18gmol1\left(M_{A}\right)=18 \,g \,mol ^{-1} Δpp=\because \frac{\Delta p}{p^{\circ}}= Relative lower in vapour-pressure of solution. Δpp=χB\frac{\Delta p}{p^{\circ}}=\chi_{B} nBnA+nB=5×103\Rightarrow \frac{n_{B}}{n_{A}+n_{B}}=5 \times 10^{-3} where, nAn_{A} and nBn_{B} are number of moles of solvent (A) and solute (B)(B) respectively. nA=36018=20n_{A}=\frac{360}{18}=20 nB=wBMB=10MBn_{B}=\frac{w_{B}}{M_{B}}=\frac{10}{M_{B}} 5×103=χB=10MB20+10MB \because 5 \times 10^{-3}=\chi_{B}=\frac{\frac{10}{M_{B}}}{20+\frac{10}{M_{B}}} 5×103=10MB20MB+10MB5 \times 10^{-3}=\frac{\frac{10}{M_{B}}}{\frac{20 M_{B}+10}{M_{B}}} 5×103=1020MB+105 \times 10^{-3}=\frac{10}{20\, M_{B}+10} (20MB+10)5×103=10\left(20\, M_{B}+10\right) 5 \times 10^{-3} =10 or, 20MB+10=105×10320\, M_{B}+10 =\frac{10}{5} \times 10^{3} 20MB+10=200020 M_{B}+10 =2000 20MB=1990\Rightarrow 20 \,M_{B}=1990 MB=199020=99.5gmol1 M_{B} =\frac{1990}{20}=99.5 \,g \,mol ^{-1}