Solveeit Logo

Question

Question: A solution is prepared by dissolving \(0 \cdot 6{\text{ g}}\) of urea (molar mass \( = 60{\text{ g m...

A solution is prepared by dissolving 06 g0 \cdot 6{\text{ g}} of urea (molar mass =60 g mol1 = 60{\text{ g mo}}{{\text{l}}^{ - 1}}) and 18 g1 \cdot 8{\text{ g}} glucose (molar mass =180 g mol1 = 180{\text{ g mo}}{{\text{l}}^{ - 1}} in 100 mL100{\text{ mL}} of water at 27C{27^ \circ }{\text{C}}. The osmotic pressure of the solution is:
(R=008206 L atm K1 mol1)\left( {{\text{R}} = 0 \cdot 08206{\text{ L atm }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}} \right)
492 atm4 \cdot 92{\text{ atm}}
164 atm1 \cdot 64{\text{ atm}}
246 atm2 \cdot 46{\text{ atm}}
82 atm8 \cdot 2{\text{ atm}}

Explanation

Solution

The pressure applied to a pure solvent so that it does not pass into the given solution by osmosis is known as the osmotic pressure. When two different solutions are mixed, the osmotic pressure of the final solution is calculated using the formula,
π=n1+n2V×RT\pi = \dfrac{{{n_1} + {n_2}}}{V} \times RT
Where, π\pi is the osmotic pressure,
n1{n_1} is the number of moles solute 11,
n2{n_2} is the number of moles of solute 22,
VV is the volume of the final solution in liters,
RR is the universal gas constant,
TT is the temperature in kelvin.

Complete step by step answer:
Step 1:
Convert the units of temperature from C^ \circ {\text{C}} to K{\text{K}} using the relation as follows:
T(K)=TC+273T\left( {\text{K}} \right) = {T^ \circ }{\text{C}} + 273
Substitute 27C{27^ \circ }{\text{C}} for the temperature in C^ \circ {\text{C}}. Thus,
T(K)=27C+273T\left( {\text{K}} \right) = {27^ \circ }{\text{C}} + 273
T(K)=300 KT\left( {\text{K}} \right) = 300{\text{ K}}
Thus, the temperature is 300 K300{\text{ K}}.
Step 2:
Convert the units of volume from mL{\text{mL}} to L{\text{L}} using the relation as follows:
1 mL=1×103 L1{\text{ mL}} = 1 \times {10^{ - 3}}{\text{ L}}
Thus,
V=100 ̸mL×1×103 L1 ̸mL=01 LV = 100{\text{ }}\not{{{\text{mL}}}} \times \dfrac{{1 \times {{10}^{ - 3}}{\text{ L}}}}{{1{\text{ }}\not{{{\text{mL}}}}}} = 0 \cdot 1{\text{ L}}
Thus, the volume is 01 L0 \cdot 1{\text{ L}}
Step 3:
Calculate the number of moles of urea using the formula as follows:
Number of moles of urea(n1)=Mass of urea(g)Molar mass of urea(g mol1){\text{Number of moles of urea}}\left( {{n_1}} \right) = \dfrac{{{\text{Mass of urea}}\left( {\text{g}} \right)}}{{{\text{Molar mass of urea}}\left( {{\text{g mo}}{{\text{l}}^{ - 1}}} \right)}}
Substitute 06 g0 \cdot 6{\text{ g}} for the mass of urea, 60 g mol160{\text{ g mo}}{{\text{l}}^{ - 1}} for the molar mass of urea. Thus,
Number of moles of urea(n1)=06 ̸g60 ̸g mol1=001 mol{\text{Number of moles of urea}}\left( {{n_1}} \right) = \dfrac{{0 \cdot 6{\text{ }}\not{{\text{g}}}}}{{60{\text{ }}\not{{\text{g}}}{\text{ mo}}{{\text{l}}^{ - 1}}}} = 0 \cdot 01{\text{ mol}}
Thus, the number of moles of urea are 001 mol0 \cdot 01{\text{ mol}}.
Step 4:
Calculate the number of moles of glucose using the formula as follows:
Number of moles of glucose(n2)=Mass of glucose(g)Molar mass of glucose(g mol1){\text{Number of moles of glucose}}\left( {{n_2}} \right) = \dfrac{{{\text{Mass of glucose}}\left( {\text{g}} \right)}}{{{\text{Molar mass of glucose}}\left( {{\text{g mo}}{{\text{l}}^{ - 1}}} \right)}}
Substitute 18 g1 \cdot 8{\text{ g}} for the mass of glucose, 180 g mol1180{\text{ g mo}}{{\text{l}}^{ - 1}} for the molar mass of glucose. Thus,
Number of moles of glucose(n2)=1̸g180 ̸g mol1=001 mol{\text{Number of moles of glucose}}\left( {{n_2}} \right) = \dfrac{{{\text{1}} \cdot {\text{8 }}\not{{\text{g}}}}}{{180{\text{ }}\not{{\text{g}}}{\text{ mo}}{{\text{l}}^{ - 1}}}} = 0 \cdot 01{\text{ mol}}
Thus, the number of moles of glucose are 001 mol0 \cdot 01{\text{ mol}}.
Step 5:
Calculate the osmotic pressure of the final solution using the formula as follows:
π=n1+n2V×RT\pi = \dfrac{{{n_1} + {n_2}}}{V} \times RT
Substitute 0.01 mol0.01{\text{ mol}} for the number of moles of urea, 001 mol0 \cdot 01{\text{ mol}} for the number of moles of glucose, 01 L0 \cdot 1{\text{ L}} for the volume of the final solution, 008206 L atm K1 mol10 \cdot 08206{\text{ L atm }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}} for the universal gas constant, 300 K300{\text{ K}} for the temperature. Thus,
π=001 mol+001 mol01 L×008206 L atm K1 mol1×300 K\pi = \dfrac{{0 \cdot 01{\text{ mol}} + 0 \cdot 01{\text{ mol}}}}{{0 \cdot 1{\text{ L}}}} \times 0 \cdot 08206{\text{ L atm }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}} \times 300{\text{ K}}
π=002 ̸mol01 ̸L×008206 ̸L atm ̸K1 ̸mol1×300 ̸K\pi = \dfrac{{0 \cdot 02{\text{ }}\not{{{\text{mol}}}}}}{{0 \cdot 1{\text{ }}\not{{\text{L}}}}} \times 0 \cdot 08206{\text{ }}\not{{\text{L}}}{\text{ atm }}\not{{{{\text{K}}^{ - 1}}}}{\text{ }}\not{{{\text{mo}}{{\text{l}}^{ - 1}}}} \times 300{\text{ }}\not{{\text{K}}}
π=492 atm\pi = 4 \cdot 92{\text{ atm}}
Thus, the osmotic pressure of a solution prepared by dissolving 06 g0 \cdot 6{\text{ g}} of urea (molar mass =60 g mol1 = 60{\text{ g mo}}{{\text{l}}^{ - 1}}) and 18 g1 \cdot 8{\text{ g}} glucose (molar mass =180 g mol1 = 180{\text{ g mo}}{{\text{l}}^{ - 1}} in 100 mL100{\text{ mL}} of water at 27C{27^ \circ }{\text{C}} is 492 atm4 \cdot 92{\text{ atm}}.

So, the correct answer is “Option A”.

Note:
Do not use the temperature value in C^ \circ {\text{C}}. Convert the temperature fromC^ \circ {\text{C}} to K{\text{K}} using the relation that 0C=274 K{0^ \circ }{\text{C}} = 274{\text{ K}}. Calculate the number of moles of each solute using the relation that the number of moles is the ratio of mass to molar mass. As two solutes are mixed to form one solution, the molar concentration of the final solution depends on both the solutes.