Solveeit Logo

Question

Question: A solution containing 7g of a solute \((molar\text{ }mass\text{ }210\text{ }g\text{ }mo{{l}^{-1}})\)...

A solution containing 7g of a solute (molar mass 210 g mol1)(molar\text{ }mass\text{ }210\text{ }g\text{ }mo{{l}^{-1}}) in 350g of acetone raised the boiling point of acetone from 56C to 56.3C{{56}^{\circ }}C\text{ }to\text{ }{{56.3}^{\circ }}C.The value of ebullioscopic constant of acetone in K kg mol1kg\text{ }mo{{l}^{-1}} (molar mass 210 g mol1)(molar\text{ }mass\text{ }210\text{ }g\text{ }mo{{l}^{-1}})is :
A. 2.66
B. 3.15
C. 4.12
D. 2.86

Explanation

Solution

To find the solution we will first calculate the molality of solution (m), elevation in boiling point ΔTb\Delta {{T}_{b}} and then we will find the ebullioscopic constant kb{{k}_{b}} by using the formula
ΔTb=kb×m\Delta {{T}_{b}}={{k}_{b}}\times m

Complete Step by step solution:
Initial boiling point of acetone is denoted by Tb=56C=(273+56)K=329K{{T}_{b}}^{\circ }={{56}^{\circ }}C=\left( 273+56 \right)K=329K
Final boiling point of acetone is denoted by Tb=56.3C=(273+56.3)K=329.3K{{T}_{b}}={{56.3}^{\circ }}C=\left( 273+56.3 \right)K=329.3K
Mass of solute given is 7g
Mass of solution given is (350+7) g=357g
Firstly, we will calculate the molality of solution (m) as:
Molality=Number of moles of solutekg of solventMolality=\dfrac{Number\text{ }of\text{ }moles\text{ }of\text{ }solute}{kg\text{ }of\text{ }solvent}
Number of moles of solute=mass of solutemolar mass of soluteNumber\text{ }of\text{ }moles\text{ }of\text{ }solute=\dfrac{mass\text{ }of\text{ }solute}{molar\text{ }mass\text{ }of\text{ }solute}
Now we can write the equation of molality as:
Molality=mass of solutemolar mass of solutekg of solventMolality=\dfrac{\dfrac{mass\text{ }of\text{ }solute}{molar\text{ }mass\text{ }of\text{ }solute}}{kg\text{ }of\text{ }solvent}
Substituting the values given in the equation we get:

& m=\dfrac{\dfrac{7}{210}}{\dfrac{350}{1000}} \\\ \implies & \dfrac{10}{105} \\\ \end{aligned}$$ We know that the formula of depression in boiling point is given by: $$\Delta {{T}_{b}}={{k}_{b}}.m$$ Where, ${{k}_{b}}$ =ebullioscopic constant $\Delta {{T}_{b}}$= elevation in boiling point that is equal to ${{T}_{b}}-{{T}_{b}}^{\circ }$ $$\begin{aligned} \implies & \left( 329.3-329 \right) \\\ \implies & 0.3K \\\ \end{aligned}$$ Now, we will find the ebullioscopic constant of acetone ${{k}_{b}}$= $$\begin{aligned} & \Delta {{T}_{b}}={{k}_{b}}\times m \\\ & \therefore 0.3={{k}_{b}}\times \dfrac{10}{105} \\\ & {{k}_{b}}=0.3\times \dfrac{105}{10} \\\ & {{k}_{b}}=3.15K\text{ }Kg\text{ }mo{{l}^{-1}} \\\ \end{aligned}$$ **Hence, we can conclude that the correct option is (b) that is the value of ebullioscopic constant of acetone in K $kg\text{ }mo{{l}^{-1}}$ is 3.15.** **Note:** \- We should not get confused in the terms molality and molarity. As, molality is the ratio of the number of moles of solute in kg of solvent. Molality is denoted by m. \- Whereas, molarity is the ratio of number of moles of solute in volume of solution. Molarity is denoted by M. \- One should not forget to write the unit in the solution.