Solveeit Logo

Question

Chemistry Question on Solutions

A solution containing 30 g of non-volatile solute exactly in 90 g of water has a vapour pressure of 2.8 kPa at 298 K. Further, 18 g of water is then added to the solution and the new vapour pressure becomes 2.9 Pa at 298 K. Calculate:
(i) molar mass of the solute
(ii) vapour pressure of water at 298 K.

Answer

(i) Let, the molar mass of the solute be Mgmol1M\, g mol^{-1}
n1=90g18gmol1=5moln_1= \frac{90 g}{18 g mol^{-1}} = 5 mol
Now, the no. of moles of solvent (water),
n2=30gMgmol1=30Mmoln_2= \frac{30 g}{M g mol^{-1}} = \frac{30}{M} mol
And, the no. of moles of solute,
P1=2.8kPaP_1 = 2.8kPa
Applying the relation:
(P1oP1)P1o=n2(n1+n2)\frac{(P^o_1-P_1)}{ P^o_1} =\frac{n_2}{(n_1+n_2)}
(P1o2.8)P1o=30M(5M+30M)⇒\frac{(P^o_1-2.8)}{ P^o_1} =\frac{\frac{30}{M}}{(\frac{5M+30}{M})}
12.8P1o=30(5M+30)⇒1-\frac{2.8}{ P^o_1} = \frac{30}{(5M+30)}
2.8P1o=(5M+3030)5M+30⇒\frac{2.8}{ P^o_1}= \frac{(5M+30-30)}{5M+30}
2.8P1o=5M(5M+30)⇒\frac{2.8}{ P^o_1}= \frac{5M}{(5M+30)}
P1o2.8=(5M+30)5M...(i)⇒ \frac{P^o_1}{2.8}= \frac{(5M+30)}{5M} ...(i)
After the addition of 18 g of water:
n1=(90+18g)18=6moln_1 = \frac{(90+18g)}{18} =6mol
P1=2.9kPaP_1 = 2.9 kPa
Again, applying the relation:
(P1oP1)P1o=n2(n1+n2)\frac{(P^o_1-P_1)}{ P^o_1} =\frac{n_2}{(n_1+n_2)}
Dividing equation **(i) **by (ii) , we have:
2.92.8=(5M+305M)(6M+306M)⇒\frac{2.9}{2.8} = \frac{(\frac{5M+ 30}{5M}) }{(\frac{6M +30}{6M})}
2.92.8×(6M+30)6=(5M+30)5⇒\frac{2.9}{2.8} \times\frac{(6M+ 30)}{6} = \frac{(5M +30)}{5}
2.9×5×(6M+30)=2.8×6×(5M+30)⇒2.9 × 5 × (6M+30) = 2.8 × 6 × (5M+30)
87M+435=84M+504⇒87 M +435= 84 M +504
3M=69⇒ 3M=69
M=23u⇒M=23u
Therefore, the molar mass of the solute is 23gmol1.23 g mol^{-1}.
(ii) Putting the value of M'M' in equation (i), we have:
P1o2.8=(5×23+30)(5×23)\frac{P^o_1}{2.8} = \frac{(5\times23 +30)}{(5 \times 23)}
P1o2.8=145115⇒\frac{P^o_1}{2.8} =\frac{145}{115}
P1o=3.53⇒P^o_1=3.53
Hence, the vapour pressure of water at 298 K is 3.53 kPa.