Solveeit Logo

Question

Chemistry Question on Colligative Properties

A solution containing 10g10 \, \text{g} of an electrolyte AB2AB_2 in 100g100 \, \text{g} of water boils at 100.52C100.52^\circ \text{C}. The degree of ionization of the electrolyte (α\alpha) is _____ ×101\times 10^{-1}. (nearest integer)
[Given: Molar mass of AB2=200g mol1,Kb(molal boiling point elevation const. of water)=0.52K kg mol1, boiling point of water=100C;AB2 ionises as AB2A2++2B][ \text{Given: Molar mass of } AB_2 = 200 \, \text{g mol}^{-1}, \, K_b \, (\text{molal boiling point elevation const. of water}) = 0.52 \, \text{K kg mol}^{-1}, \text{ boiling point of water} = 100^\circ \text{C}; \, AB_2 \text{ ionises as } AB_2 \rightarrow A^{2+} + 2B^- ]

Answer

Ionization of AB2_2:
AB2A2++2B.\text{AB}_2 \rightarrow \text{A}^{2+} + 2\text{B}^-.
The van't Hoff factor (ii) is: i=1+(31)α=1+2α.i = 1 + (3 - 1)\alpha = 1 + 2\alpha.
Boiling point elevation:ΔTb=Kbmi,\Delta T_b = K_b \cdot m \cdot i,
where m=Mass of soluteMolar mass of soluteMass of solvent (kg).m = \frac{\text{Mass of solute}}{\text{Molar mass of solute} \cdot \text{Mass of solvent (kg)}}.
Substitute values:
m=102000.1=0.5mol/kg.m = \frac{10}{200 \cdot 0.1} = 0.5 \, \text{mol/kg}.
ΔTb=0.52=0.520.5(1+2α).\Delta T_b = 0.52 = 0.52 \cdot 0.5 \cdot (1 + 2\alpha).
Simplify:
1=1+2α    2α=1    α=0.5.1 = 1 + 2\alpha \implies 2\alpha = 1 \implies \alpha = 0.5.
Convert to nearest integer:
α×10=5.\alpha \times 10 = 5.
Final Answer: 5

Explanation

Solution

Ionization of AB2_2:
AB2A2++2B.\text{AB}_2 \rightarrow \text{A}^{2+} + 2\text{B}^-.
The van't Hoff factor (ii) is: i=1+(31)α=1+2α.i = 1 + (3 - 1)\alpha = 1 + 2\alpha.
Boiling point elevation:ΔTb=Kbmi,\Delta T_b = K_b \cdot m \cdot i,
where m=Mass of soluteMolar mass of soluteMass of solvent (kg).m = \frac{\text{Mass of solute}}{\text{Molar mass of solute} \cdot \text{Mass of solvent (kg)}}.
Substitute values:
m=102000.1=0.5mol/kg.m = \frac{10}{200 \cdot 0.1} = 0.5 \, \text{mol/kg}.
ΔTb=0.52=0.520.5(1+2α).\Delta T_b = 0.52 = 0.52 \cdot 0.5 \cdot (1 + 2\alpha).
Simplify:
1=1+2α    2α=1    α=0.5.1 = 1 + 2\alpha \implies 2\alpha = 1 \implies \alpha = 0.5.
Convert to nearest integer:
α×10=5.\alpha \times 10 = 5.
Final Answer: 5