Solveeit Logo

Question

Question: A solution containing 10 g per \[{\text{d}}{{\text{m}}^{\text{3}}}\] of urea (m.w. = 60) is isotonic...

A solution containing 10 g per dm3{\text{d}}{{\text{m}}^{\text{3}}} of urea (m.w. = 60) is isotonic with a 5%5\% solution of a non-volatile solute. The molecular mass of this non-volatile solute is:
A) 250 g mol - 1{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}
B) 300 g mol - 1{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}
C) 350 g mol - 1{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}
D) 200 g mol - 1{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}

Explanation

Solution

We know the concentration is the same for isotonic solutions. So, by equating the concentration of urea solution and the solution of a non-volatile solute we can get the molecular mass of the non-volatile solute.

Formula Used: concentration = molesvolume{\text{concentration = }}\dfrac{{{\text{moles}}}}{{{\text{volume}}}}

Complete step by step answer:
We know that urea is non-volatile in nature:
Let us first calculate the concentration of the urea solution:
We know that the concentration is the number of moles divided by the volume of the solution
concentration = molesvolume{\text{concentration = }}\dfrac{{{\text{moles}}}}{{{\text{volume}}}}
Now, we know that number of moles is given mass divided by the molecular mass of the substance. So, the formula can be modified as follows:
concentration = given massmolecular mass X volume{\text{concentration = }}\dfrac{{{\text{given mass}}}}{{{\text{molecular mass X volume}}}}
Now, in the question, we are provided with the given mass of urea and molecular mass of urea.
So by substituting the value we get the concentration of urea as follows:
Curea=10g60gmol - 1 ×1000cm - 3{{\text{C}}_{{\text{urea}}}} = \dfrac{{10{\text{g}}}}{{60{\text{gmo}}{{\text{l}}^{{\text{ - 1}}}}{\text{ }} \times 1000{\text{c}}{{\text{m}}^{{\text{ - 3}}}}}} (equation 1)
Here, 1 dm3=1000 cm31{\text{ d}}{{\text{m}}^{\text{3}}} = 1000{\text{ c}}{{\text{m}}^{\text{3}}}
Now let us calculate the concentration of non-volatile solute:
For non-volatile solute, we are given with 5%5\% a solution which means 5 grams of nonvolatile solute is dissolved in 100 cm3{\text{c}}{{\text{m}}^{\text{3}}} solutions.
So the concentration of non-volatile solute becomes:
Cnon - volatile=5g×100cm - 3{{\text{C}}_{{\text{non - volatile}}}} = \dfrac{{5{\text{g}}}}{{{\text{M }} \times 100{\text{c}}{{\text{m}}^{{\text{ - 3}}}}}} (equation 2)
Here, M = molecular mass of the non-volatile solute.
Now, we know that both the solutions are isotonic which means:
Curea = Cnon - volatile{{\text{C}}_{{\text{urea}}}}{\text{ = }}{{\text{C}}_{{\text{non - volatile}}}}
By substituting the values form equation 1 and equation 2 we get:
10g60gmol - 1 ×1000cm - 3=5gM ×100cm - 3\dfrac{{10{\text{g}}}}{{60{\text{gmo}}{{\text{l}}^{{\text{ - 1}}}}{\text{ }} \times 1000{\text{c}}{{\text{m}}^{{\text{ - 3}}}}}} = \dfrac{{5{\text{g}}}}{{M{\text{ }} \times 100{\text{c}}{{\text{m}}^{{\text{ - 3}}}}}}
By taking all the values on one side we get:
M=5g×60gmol - 1 ×1000cm - 310×100cm - 3{\text{M}} = \dfrac{{5{\text{g}} \times 60{\text{gmo}}{{\text{l}}^{{\text{ - 1}}}}{\text{ }} \times 1000{\text{c}}{{\text{m}}^{{\text{ - 3}}}}}}{{10{\text{g }} \times 100{\text{c}}{{\text{m}}^{{\text{ - 3}}}}}}
By solving the equation we get:
M=300gmol - 1M = 300{\text{gmo}}{{\text{l}}^{{\text{ - 1}}}}

Therefore, we can conclude that the correct answer to this question is option B.

Note: We must always focus on the conversion of the unit. Here dm3{\text{d}}{{\text{m}}^{\text{3}}} has to be converted in cm3{\text{c}}{{\text{m}}^{\text{3}}} because the 5%5\% non-volatile solution means 5 grams of nonvolatile solute is dissolved in 100 cm3{\text{c}}{{\text{m}}^{\text{3}}} of the solution and not 100 dm3{\text{d}}{{\text{m}}^{\text{3}}} of the solution.