Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A solid spherical ball rolls on a table. Ratio of its rotational kinetic energy to total kinetic energy is

A

12\frac{1}{2}

B

16\frac{1}{6}

C

710\frac{7}{10}

D

27\frac{2}{7}

Answer

27\frac{2}{7}

Explanation

Solution

Linear K.E. of ball =12mv2=\frac{1}{2} mv^2 and rotational K.E.
of ball =12Iω2=12(25mr2)ω2=15mv2=\frac{1}{2}I\omega^2=\frac{1}{2}\bigg(\frac{2}{5}mr^2\bigg) \omega^2 =\frac{1}{5}mv^2
Therefore total K.E. =12mv3+15mv2=710mv2\frac{1}{2}mv^3+\frac{1}{5}mv^2=\frac{7}{10}mv^2.
And ratio of rotational K.E. and total K.E.
=(1/5)mv2(7/10)mv2=27\, \, \, \, \, \, =\frac{(1/5)mv^2}{(7/10)mv^2}=\frac{2}{7}.