Solveeit Logo

Question

Question: A solid sphere of radius R<sub>1</sub> and volume charge density r = \(\frac{\rho_{0}}{r}\) is enclo...

A solid sphere of radius R1 and volume charge density r = ρ0r\frac{\rho_{0}}{r} is enclosed by a hollow sphere of radius R2 with negative surface charge density s, such that the total charge in the system is zero, r0 is a positive constant and r is the distance from the centre of the sphere. The ratio R2R1\frac{R_{2}}{R_{1}} is –

A

σρ0\frac{\sigma}{\rho_{0}}

B

2σ/ρ0\sqrt{2\sigma/\rho_{0}}

C

ρ0/(2σ)\sqrt{\rho_{0}/(2\sigma)}

D

ρ0σ\frac{\rho_{0}}{\sigma}

Answer

ρ0/(2σ)\sqrt{\rho_{0}/(2\sigma)}

Explanation

Solution

For solid sphere

q1 = Q r =

= 4pr0 0R1rdr\int _ { 0 } ^ { \mathrm { R } _ { 1 } } \mathrm { rdr }

= …(1)

q2 = –4ps

Q q1 + q2 = 0 \ R2R1=ρ02σ\frac { \mathrm { R } _ { 2 } } { \mathrm { R } _ { 1 } } = \sqrt { \frac { \rho _ { 0 } } { 2 \sigma } }