Solveeit Logo

Question

Physics Question on Electric charges and fields

A solid sphere of radius RR has a charge QQ distributed in its volume with a charge density ρ=kra\rho=k r^{a}, where kk and a are constants and rr is the distance from its center. If the electric field at r=R2r =\frac{R}{2} is times that at r=Rr = R, the value of aa is

A

3

B

5

C

2

D

7

Answer

2

Explanation

Solution

EdA=1ε0(ρdv)\oint \vec{E} \cdot d \vec{A}=\frac{1}{\varepsilon_{0}} \int(\rho d v)
=1ε0kra×4πr2dr=\frac{1}{\varepsilon_{0}} \int k r^{a} \times 4 \pi r^{2} d r
or E×4πR2=(4πkε0)R(a+3)(a+3)E \times 4 \pi R^{2}=\left(\frac{4 \pi k}{\varepsilon_{0}}\right) \frac{R^{(a+3)}}{(a+3)}
E1=kR(a+1)ε0(a+3)\therefore E_{1}=\frac{k R^{(a+1)}}{\varepsilon_{0}(a+3)}
EE For r=R2E2=k(R2)a+1ε0(a+3)r=\frac{R}{2} \cdot E_{2}=\frac{k\left(\frac{R}{2}\right)^{a+1}}{\varepsilon_{0}(a+3)}
Given E2=E18E_{2}=\frac{E_{1}}{8}
or k(R2)a+1ε0(a+3)=18kR(a+1)ε0(a+3)\frac{k\left(\frac{R}{2}\right)^{a+1}}{\varepsilon_{0}(a+3)}=\frac{1}{8} \frac{k R^{(a+1)}}{\varepsilon_{0}(a+3)}
12a+3=18\therefore \frac{1}{2^{a+3}}=\frac{1}{8}
or a=2a=2.