Solveeit Logo

Question

Physics Question on Electric charges and fields

A solid sphere of radius R1R_{1} and volume charge density ρ=ρ0r\rho=\frac{\rho_{0}}{r} is enclosed by a hollow sphere of radius R2R_{2} with negative surface charge density σ\sigma, such that the total charge in the system is zero, ρ0\rho_{0} is a positive constant and rr is the distance from the centre of the sphere. The ratio R2R1\frac{R_{2}}{R_{1}} is

A

σρ0\frac{\sigma}{\rho_{0}}

B

2σ/ρ0\sqrt{2\sigma/ \rho_{0}}

C

ρ0/(2σ)\sqrt{\rho_{0} /\left(2\sigma\right)}

D

σρ0\frac{\sigma }{\rho _{0}}

Answer

ρ0/(2σ)\sqrt{\rho_{0} /\left(2\sigma\right)}

Explanation

Solution

For solid sphere of radius R1R_{1} q1=0R14πr2drρq_{1}=\int\limits_{0}^{R_{1}} 4 \pi r^{2} d r \rho =0R14πr2drρ0r=\int\limits_{0}^{R_{1}} 4 \pi r^{2} d r \frac{\rho_{0}}{r} q1=4πR122ρ0q_{1}=4 \pi \frac{R_{1}^{2}}{2} \rho_{0} q2=4πR22σq_{2}=-4 \pi R_{2}^{2} \sigma q1+q2=0q_{1}+q_{2}=0 4πR12ρ024πR22σ=04 \pi \frac{R_{1}^{2} \,\rho_{0}}{2}-4 \pi R_{2}^{2} \sigma=0 (R1R2)2=2σρ0\left(\frac{R_{1}}{R_{2}}\right)^{2}=\frac{2 \sigma}{\rho_{0}} R2R1=ρ02σ\frac{R_{2}}{R_{1}}=\sqrt{\frac{\rho_{0}}{2 \sigma}}