Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A solid sphere is rolling without slipping on a horizontal surface. The ratio of its rotational kinetic energy and translational kinetic energy is:

A

29\frac{2}{9}

B

25\frac{2}{5}

C

27\frac{2}{7}

D

72\frac{7}{2}

Answer

25\frac{2}{5}

Explanation

Solution

Moment of inertia of sphere I=25MR2I=\frac{2}{5} M R^{2} ...(1) and for pure rolling v=Rωv=R \omega...(2)  Rotational KE  Translational KE=12Iω212mv2\frac{\text { Rotational KE }}{\text { Translational } KE }=\frac{\frac{1}{2} I \omega^{2}}{\frac{1}{2} m v^{2}} from (1) and (2) =12×25MR2ω212MR2ω2=25=\frac{\frac{1}{2} \times \frac{2}{5} M R^{2} \omega^{2}}{\frac{1}{2} M R^{2} \omega^{2}}=\frac{2}{5}