Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A solid sphere and solid cylinder of identical radii approach an incline with the same linear velocity (see figure). Both roll without slipping all throughout. The two climb maximum heights hsphh_{sph} and hcylh_{cyl} on the incline. The ratio hsphhcyl\frac{h_{sph}}{h_{cyl}} is given by :

A

1415\frac{14}{15}

B

45\frac{4}{5}

C

11

D

25\frac{2}{\sqrt{5}}

Answer

1415\frac{14}{15}

Explanation

Solution

for solid sphere
12mv2+12.25mR2.v2R2=mghsph\frac{1}{2} mv^{2} + \frac{1}{2} . \frac{2}{5} mR^{2} . \frac{v^{2}}{R^{2}} =mgh_{sph}
for solid cylinder
12mv2+12.12mR2.v2R2=mghcyl\frac{1}{2}mv^{2} + \frac{1}{2} . \frac{1}{2} mR^{2} . \frac{v^{2}}{R^{2}} = mgh_{cyl}
hsphhcyl=7/53/2=1415\Rightarrow \frac{h_{sph}}{h_{cyl}} = \frac{7 /5}{3 /2} = \frac{14}{15}