Solveeit Logo

Question

Physics Question on rotational motion

A solid sphere and a hollow cylinder roll up without slipping on the same inclined plane with the same initial speed vv. The sphere and the cylinder reach up to maximum heights h1h_1 and h2h_2, respectively, above the initial level. The ratio h1:h2h_1 : h_2 is n10\frac{n}{10}. The value of nn is ______.

Answer

Conservation of Energy:
When the solid sphere and hollow cylinder roll up the incline, their initial kinetic energy (both translational and rotational) is converted into gravitational potential energy at the maximum height.

Total Initial Kinetic Energy for Each Object:
For the solid sphere:
Total KE=12mv2+12Isphereω2\text{Total KE} = \frac{1}{2}mv^2 + \frac{1}{2}I_{\text{sphere}}\omega^2
where Isphere=25mR2I_{\text{sphere}} = \frac{2}{5}mR^2 and ω=vR\omega = \frac{v}{R}.

Total KEsphere=12mv2+12×25mR2×v2R2\text{Total KE}_{\text{sphere}} = \frac{1}{2}mv^2 + \frac{1}{2} \times \frac{2}{5}mR^2 \times \frac{v^2}{R^2}

=12mv2+15mv2=710mv2= \frac{1}{2}mv^2 + \frac{1}{5}mv^2 = \frac{7}{10}mv^2

For the hollow cylinder:
Total KE=12mv2+12Icylinderω2\text{Total KE} = \frac{1}{2}mv^2 + \frac{1}{2}I_{\text{cylinder}}\omega^2
where Icylinder=mR2I_{\text{cylinder}} = mR^2.

Total KEcylinder=12mv2+12×mR2×v2R2\text{Total KE}_{\text{cylinder}} = \frac{1}{2}mv^2 + \frac{1}{2} \times mR^2 \times \frac{v^2}{R^2}

=12mv2+12mv2=mv2= \frac{1}{2}mv^2 + \frac{1}{2}mv^2 = mv^2

Potential Energy at Maximum Height:
At maximum height, all kinetic energy is converted to potential energy:

For the solid sphere:
mgh1=710mv2mgh_1 = \frac{7}{10}mv^2 h1=7v210gh_1 = \frac{7v^2}{10g}

For the hollow cylinder:
mgh2=mv2mgh_2 = mv^2 h2=v2gh_2 = \frac{v^2}{g}

Calculate the Ratio h1h2\frac{h_1}{h_2}:
h1h2=7v210gv2g=710\frac{h_1}{h_2} = \frac{\frac{7v^2}{10g}}{\frac{v^2}{g}} = \frac{7}{10}

Conclusion:
The ratio h1:h2h_1 : h_2 is 710\frac{7}{10}, so the value of nn is 77.