Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A solid cylinder rolls up an inclined plane of inclination θ\theta with an initial velocity vv. How far does the cylinder go up the plane?

A

3v22gsinθ\frac{3v^{2}}{2g\, sin \,\theta}

B

v24gsinθ\frac{v^{2}}{4g\, sin \,\theta}

C

3v2gsinθ\frac{3v^{2}}{g\, sin \,\theta}

D

3v24gsinθ\frac{3v^{2}}{4g\, sin \,\theta}

Answer

3v24gsinθ\frac{3v^{2}}{4g\, sin \,\theta}

Explanation

Solution

Let the cylinder go up the plane upto a height hh. Let MM and RR be the mass and radius of the cylinder respectively. According to law of conservation of mechanical energy, we get 12Mv2+12Iω2=Mgh\frac{1}{2}Mv^2 + \frac{1}{2} I\omega^2 = Mgh 12Mv2+12MR22ω2=Mgh\frac{1}{2}Mv^{2} +\frac{1}{2}\frac{MR^{2}}{2} \omega^{2} = Mgh (For a solid cylinder,I=12MR2)\left(\because {\text{For a solid cylinder}}, I= \frac{1}{2}MR^{2}\right) 12Mv2+14MR2ω2=Mgh\frac{1}{2}Mv^{2} +\frac{1}{4}MR^{2}\omega^{2} = Mgh 12Mv2+14Mv2=Mgh(v=Rω)\frac{1}{2}Mv^{2}+\frac{1}{4}Mv^{2} = Mgh \quad\left(\because v= R\omega\right) 34Mv2=Mgh \frac{3}{4}Mv^{2} = Mgh h=3v24g...(i) h= \frac{3v^{2}}{4 g}\quad...\left(i\right) Let ss be distance travelled by the cylinder up the plane.Then sinθ=hssin \,\theta = \frac{h}{s} or s=hsinθ=3v24gsinθs = \frac{h}{sin\, \theta} = \frac{3\, v^{2}}{4\, g\, sin\, \theta} (Using(i)(i))