Solveeit Logo

Question

Question: A solid cylinder rolls up an inclined plane of inclination \(\theta\)with an initial velocity v. How...

A solid cylinder rolls up an inclined plane of inclination θ\thetawith an initial velocity v. How far does the cylinder go up the plane?

A
B

v24gsinθ\frac { v ^ { 2 } } { 4 g \sin \theta }

C

3v2gsinθ\frac { 3 v ^ { 2 } } { g \sin \theta }

D

3v24 gsinθ\frac { 3 \mathrm { v } ^ { 2 } } { 4 \mathrm {~g} \sin \theta }

Answer

3v24 gsinθ\frac { 3 \mathrm { v } ^ { 2 } } { 4 \mathrm {~g} \sin \theta }

Explanation

Solution

Let the cylinder go up the plane upto a height h let M and R be the mass and radius of the cylinder respectively. According to law of conservation of mechanical energy we get

12Mv2+12Iω2=Mgh\frac { 1 } { 2 } \mathrm { Mv } ^ { 2 } + \frac { 1 } { 2 } \mathrm { I } \omega ^ { 2 } = \mathrm { Mgh }

12Mv2+12MR22ω2=Mgh\frac { 1 } { 2 } \mathrm { Mv } ^ { 2 } + \frac { 1 } { 2 } \frac { \mathrm { MR } ^ { 2 } } { 2 } \omega ^ { 2 } = \mathrm { Mgh } 12Mv2+14MR2ω2=Mgh\frac { 1 } { 2 } \mathrm { Mv } ^ { 2 } + \frac { 1 } { 4 } \mathrm { MR } ^ { 2 } \omega ^ { 2 } = \mathrm { Mgh }

12Mv2+14Mv2=Mgh\frac { 1 } { 2 } \mathrm { Mv } ^ { 2 } + \frac { 1 } { 4 } \mathrm { Mv } ^ { 2 } = \mathrm { Mgh } (v=Rω)( \because \mathrm { v } = \mathrm { R } \omega ) 34Mv2=Mgh\frac { 3 } { 4 } \mathrm { Mv } ^ { 2 } = \mathrm { Mgh }

h=3v24gh = \frac { 3 v ^ { 2 } } { 4 g } …(i)

Let s be distance travelled by the cylinder up the plane then

sinθ=hs\sin \theta = \frac { h } { s } or s=hsinθ=3v24gsinθs = \frac { h } { \sin \theta } = \frac { 3 v ^ { 2 } } { 4 g \sin \theta } (Using(i))