Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A solid cylinder of mass 2 kg and radius 4 cm is rotating about its axis at the rate of 3 rpm. The torque required to stop after 2π\pirevolutions is:

A

12×104Nm12\times10^{-4}Nm

B

2×106Nm2\times10^{6}Nm

C

2×106Nm2\times10^{-6}Nm

D

2×103Nm2\times10^{-3}Nm

Answer

2×106Nm2\times10^{-6}Nm

Explanation

Solution

Work energy theorem .
W=12I(ωf2ωi2)θ=2πW = \frac{1}{2}I\left(\omega^{2}_{f} - \omega^{2}_{i}\right) \theta = 2\pi
=2π×2π=4π2= 2 \pi \times2\pi = 4\pi^{2}
Wi=3×2π60rad/sW_{i} = 3\times\frac{2\pi}{60} \text{rad} / s
τθ=12×12mr2(02ωi2)\Rightarrow -\tau \theta = \frac{1}{2} \times\frac{1}{2} mr^{2} \left(0^{2} -\omega^{2}_{i}\right)
τ=12×12×2×(4×102)(3×2π60)24π2\Rightarrow -\tau = \frac{\frac{1}{2} \times\frac{1}{2} \times2 \times\left(4 \times10^{-2}\right) \left( -3 \times\frac{2\pi}{60}\right)^{2}}{4\pi^{2}}
τ=2×106Nm\Rightarrow \tau = 2\times10^{-6} Nm