Solveeit Logo

Question

Physics Question on Inclined planes

A solid cylinder is rolling down on an inclined plane of angle θ,\theta , The coefficient of static friction between the plane and cylinder is μs \mu _{s} . Then condition for the cylinder not to slip is

A

tanθ3μs \tan \,\theta \ge \,3\mu_{s}

B

tanθ>3μs \tan \,\theta >3\mu _{s}

C

tanθ3μs \tan \,\theta \le 3\mu _{s}

D

tanθ<3μs \tan \,\theta < 3\mu_{s}

Answer

tanθ3μs \tan \,\theta \le 3\mu _{s}

Explanation

Solution

For the rolling of a solid cylinder acceleration
a=g3sinθa=\frac{g}{3} \sin \theta
\therefore The condition for the cylinder to remain in equilibrium
maμsRm a \leq \mu_{s} R
13MgsinθMgcosθμs\Rightarrow \frac{1}{3} M g \sin \theta \leq M g \cos \theta \cdot \mu_{s}
or μs13tanθ\mu_{s} \geq \frac{1}{3} \tan \theta
or tanθ3μs\tan \theta \leq 3\, \mu_{s}