Solveeit Logo

Question

Physics Question on The solid state

A solid cube of mass m at a temperature θ0θ_0 is heated at a constant rate. It becomes liquid at temperature θ1θ_1 and vapour at temperature θ2θ_2 . Let s1s_1 and s2s_2 be specific heats in its solid and liquid states respectively. If LfL_f and LvL_v are latent heats of fusion and vaporisation respectively, then the minimum heat energy supplied to the cube until it vaporises is

A

$ms_1 (θ_1 - θ_0) + ms_2 (θ_2 - θ_1)

B

mLf+Ms2(θ2θ1)+mLvmL_f + Ms_2(θ_2 - θ_1) + mL_v

C

ms1(θ1θ0)+mLf+ms2(θ2θ1)+mLfms_1 (θ_1 - θ_0) +mL_f + ms_2 (θ_2 - θ_1) + mL_f

D

ms1(θ1θ0)+mLf+ms2(θ2θ0)+mLfms_1 (θ_1 - θ_0) +mL_f + ms_2 (θ_2 - θ_0) + mL_f

Answer

ms1(θ1θ0)+mLf+ms2(θ2θ1)+mLfms_1 (θ_1 - θ_0) +mL_f + ms_2 (θ_2 - θ_1) + mL_f

Explanation

Solution

The correct answer is Option (C) : ms1(θ1θ0)+mLf+ms2(θ2θ1)+mLfms_1 (θ_1 - θ_0) +mL_f + ms_2 (θ_2 - θ_1) + mL_f