Solveeit Logo

Question

Physics Question on radiation

A solid copper sphere of density ρ\rho, specific heat capacity CC and radius rr is initially at 200K200\, K. It is suspended inside a chamber whose walls are at 0K0\, K. The time required (in (is) for the temperature of the sphere to drop to 100K100 \,K is (σ\sigma is Stefan's constant and all the quantities are in SI units)

A

48rρCσ48 \frac{r\rho C}{\sigma}

B

148rρCσ\frac{1}{48} \frac{r\rho C}{\sigma}

C

277rρCσ\frac{27}{7} \frac{r\rho C}{\sigma}

D

727rρCσ\frac{7}{27} \frac{r\rho C}{\sigma}

Answer

148rρCσ\frac{1}{48} \frac{r\rho C}{\sigma}

Explanation

Solution

Here, T=200KT=200 \,K and T0=0KT_{0}=0 \,K As the rate of fall of temperature, ΔTΔt=σAe(T4T04)ms\frac{\Delta T}{\Delta t}=\frac{\sigma A e\left(T^{4}-T_{0}^{4}\right)}{m s} where, σ=\sigma= Stefan's constant, A=A= area of sphere, and e=e= emissivity =1=1 and S=S= specific heat capacity. So, t=msΔTσA(T4T04)(T0=0K) t=\frac{m s \Delta T}{\sigma A\left(T^{4}-T_{0}^{4}\right)} \left(\because T_{0}=0\, K \right) t=(ρV)C(200K100K)σ(A)(200404) \Rightarrow t=\frac{(\rho V) C(200\, K -100\, K )}{\sigma(A)\left(200^{4}-0^{4}\right)} t=ρ43πr3C×100σ4πr2×(200)4\Rightarrow t=\frac{\rho \frac{4}{3} \pi r^{3} C \times 100}{\sigma 4 \pi r^{2} \times(200)^{4}} t=148rρCσ×106s \Rightarrow t=\frac{1}{48} \frac{r \rho C}{\sigma} \times 10^{-6} s =148ρrCσμs=\frac{1}{48} \frac{\rho r C}{\sigma} \,\mu s