Solveeit Logo

Question

Question: A solid copper sphere (density \(\rho\) and specific heat capacity \(c\)) of radius r at an initial ...

A solid copper sphere (density ρ\rho and specific heat capacity cc) of radius r at an initial temperature 200K is suspended inside a chamber whose walls are at almost 0K. The time required (in μ\mus) for the temperature of the sphere to drop to 100 K is

A

727rρcσ\frac{72}{7}\frac{r\rho c}{\sigma}

B

772rρcσ\frac{7}{72}\frac{r\rho c}{\sigma}

C

277rρcσ\frac{27}{7}\frac{r\rho c}{\sigma}

D

727rρcσ\frac{7}{27}\frac{r\rho c}{\sigma}

Answer

772rρcσ\frac{7}{72}\frac{r\rho c}{\sigma}

Explanation

Solution

dTdt=σAmcJ(T4T04)\frac{dT}{dt} = \frac{\sigma A}{mcJ}(T^{4} - T_{0}^{4}) [In the given problem fall in

temperature of body dT=(200100)=100KdT = (200 - 100) = 100K

Temperature of surrounding T0 = 0K, Initial temperature of body T = 200K]

100dt=σ4πr243πr3ρcJ(200404)\frac{100}{dt} = \frac{\sigma 4\pi r^{2}}{\frac{4}{3}\pi r^{3}\rho cJ}(200^{4} - 0^{4})

dt=rρcJ48σ×106s=rρcσ.4.248×106=780rρcσμs~772rρcσμsdt = \frac{r\rho cJ}{48\sigma} \times 10^{- 6}s = \frac{r\rho c}{\sigma}.\frac{4.2}{48} \times 10^{- 6} = \frac{7}{80}\frac{r\rho c}{\sigma}\mu s\widetilde{–}\frac{7}{72}\frac{r\rho c}{\sigma}\mu s [As J = 4.2]