Solveeit Logo

Question

Question: A solid copper cube of edges 1 cm is suspended in an evacuated enclosure. Its temperature is found t...

A solid copper cube of edges 1 cm is suspended in an evacuated enclosure. Its temperature is found to fall from 1000C to 990C in 100s. Another solid copper cube of edges 2 cm, with similar surface nature, is suspended in a similar manner. The time required for this cube to cool from 1000C to 990C will be approximately

A

25 s

B

50 s

C

200 s

D

400 s

Answer

200 s

Explanation

Solution

dTdt=eAσmc(T4T04)=e(6a2)σ(a3×ρ)c(T4T04)\frac{dT}{dt} = \frac{eA\sigma}{mc}\left( T^{4} - T_{0}^{4} \right) = \frac{e(6a^{2})\sigma}{(a^{3} \times \rho)c}(T^{4} - T_{0}^{4}) ⇒ For the same fall in temperature, time dtadt \propto a

dt2dt1=a2a1=2cm1cm\frac{dt_{2}}{dt_{1}} = \frac{a_{2}}{a_{1}} = \frac{2cm}{1cm} ⇒ dt2 = 2 × dt­1 = 2 × 100 sec = 200 sec

[As A = 6a2 and m = V × ρ = a3 × ρ]