Solveeit Logo

Question

Question: A solid body rotates with deceleration about a stationary axis with an angular deceleration\(\beta \...

A solid body rotates with deceleration about a stationary axis with an angular decelerationβω\beta \propto \sqrt{\omega }, where ω\omega is its angular velocity. If the mean angular velocity of the body averaged over the whole time of rotation is ω=ω0x\left\langle \omega \right\rangle =\dfrac{{{\omega }_{0}}}{x}, (at the initial moment of time, its angular velocity was equal to ω0{{\omega }_{0}}) find the value of xx.

Explanation

Solution

Hint: This question can be solved by finding out the relation by integrating the relation of angular acceleration deceleration given with respect to time, to find out the total change in angular velocity in terms of the initial angular velocity and also the total time taken. This relation can then be used to find out the total angular rotation by integrating it with respect to time and then dividing it by the total time taken. Then we can compare this final relation that we have got with that given in the question to find out the value of xx.
Formula used:

α=dωdt\alpha =\dfrac{d\omega }{dt} ,
αdt=dω\therefore \alpha dt=d\omega

where α\alpha is the instantaneous angular acceleration of the body, ω\omega is the angular velocity and tt is the time taken.

ω=dθdt\omega =\dfrac{d\theta }{dt} ,
ωdt=dθ\therefore \omega dt=d\theta
where ω\omega is the instantaneous angular velocity of the body, θ\theta is the angular rotation and tt is the time taken.

Mean angular velocity = Total angular rotation covered by a bodytime taken\text{Mean angular velocity = }\dfrac{\text{Total angular rotation covered by a body}}{\text{time taken}}
ω=0θdθ0tdt\therefore \left\langle \omega \right\rangle =\dfrac{\int\limits_{0}^{\theta }{d\theta }}{\int\limits_{0}^{t}{dt}}

Complete step by step answer:
We are given a body that is rotating about a stationary axis and has an angular deceleration βω\beta \propto \sqrt{\omega }, where ω\omega is its angular velocity. We will first find out the change in angular velocity by integrating this relation with respect to time since,
α=dωdt\alpha =\dfrac{d\omega }{dt} --(1)
αdt=dω\therefore \alpha dt=d\omega
where α\alpha is the instantaneous angular acceleration of the body, ω\omega is the angular velocity and tt is the time taken.
Therefore, β=Kω\beta =K\sqrt{\omega }--(2)
where K is a constant of proportionality.
Using (1),
β=dωdt\beta =-\dfrac{d\omega }{dt} --(3)

Since in the question, β\beta is angular deceleration, it will have a negative sign.
Now, using (2) in (3), we get,

dωdt=Kω-\dfrac{d\omega }{dt}=K\sqrt{\omega }
dωω=Kdt\therefore -\dfrac{d\omega }{\sqrt{\omega }}=Kdt
Now, integrating with proper limits and with respective variable, we get,
ω0ωdωω=K0Tdt-\int\limits_{{{\omega }_{0}}}^{\omega }{\dfrac{d\omega }{\sqrt{\omega }}}=K\int\limits_{0}^{T}{dt}
where TT is the total time of rotation.
2[ω]ω0ω=K[t]0T\Rightarrow -2\left[ \sqrt{\omega } \right]_{{{\omega }_{0}}}^{\omega }=K\left[ t \right]_{0}^{T}
2[ωω0]=K[T0]\Rightarrow -2\left[ \sqrt{\omega }-\sqrt{{{\omega }_{0}}} \right]=K\left[ T-0 \right]
ω0ω=KT2\Rightarrow \sqrt{{{\omega }_{0}}}-\sqrt{\omega }=\dfrac{KT}{2}
ω=ω0KT2\Rightarrow \sqrt{\omega }=\sqrt{{{\omega }_{0}}}-\dfrac{KT}{2}
Now, squaring both sides, we get,
(ω)2=(ω0KT2)2{{\left( \sqrt{\omega } \right)}^{2}}={{\left( \sqrt{{{\omega }_{0}}}-\dfrac{KT}{2} \right)}^{2}}
ω=ω0ω0KT+K2T24\therefore \omega ={{\omega }_{0}}-\sqrt{{{\omega }_{0}}}KT+\dfrac{{{K}^{2}}{{T}^{2}}}{4} ---(4)

Now, considering ω=0\omega =0, at the end of rotation, we get,

2ω0=KT2\sqrt{{{\omega }_{0}}}=KT
T=2ω0K\therefore T=\dfrac{2\sqrt{{{\omega }_{0}}}}{K}
Therefore total time of rotation T=2ω0KT=\dfrac{2\sqrt{{{\omega }_{0}}}}{K} --(5)
Now, Mean angular velocity = Total angular rotation covered by a bodytotal time taken\text{Mean angular velocity = }\dfrac{\text{Total angular rotation covered by a body}}{\text{total time taken}}
ω=dθdt\omega =\dfrac{d\theta }{dt} ,
ωdt=dθ\therefore \omega dt=d\theta --(6)

where ω\omega is the instantaneous angular velocity of the body, θ\theta is the angular rotation and tt is the time taken.

We will now find out the total angular rotation (θ)\left( \theta \right) using this information.
Using (6), the total angular rotation will be,

0θdθ=0Tωdt\int\limits_{0}^{\theta }{d\theta }=\int\limits_{0}^{T}{\omega dt}-(7)
Putting (4) in (7), we get,
0θdθ=02ω0K(ω0ω0KT+K2T24)dT\int\limits_{0}^{\theta }{d\theta }=\int\limits_{0}^{\dfrac{2\sqrt{{{\omega }_{0}}}}{K}}{\left( {{\omega }_{0}}-\sqrt{{{\omega }_{0}}}KT+\dfrac{{{K}^{2}}{{T}^{2}}}{4} \right)dT}
[θ]0θ=[ω0Tω0KT22+K24T33]02ω0K\therefore \left[ \theta \right]_{0}^{\theta }=\left[ {{\omega }_{0}}T-\sqrt{{{\omega }_{0}}}K\dfrac{{{T}^{2}}}{2}+\dfrac{{{K}^{2}}}{4}\dfrac{{{T}^{3}}}{3} \right]_{0}^{\dfrac{2\sqrt{{{\omega }_{0}}}}{K}}
θ=[ω02ω0Kω0K24ω0K2+K2128ω0ω0K3000]\therefore \theta =\left[ {{\omega }_{0}}\dfrac{2\sqrt{{{\omega }_{0}}}}{K}-\dfrac{\sqrt{{{\omega }_{0}}}K}{2}\dfrac{4{{\omega }_{0}}}{{{K}^{2}}}+\dfrac{{{K}^{2}}}{12}\dfrac{8{{\omega }_{0}}\sqrt{{{\omega }_{0}}}}{{{K}^{3}}}-0-0-0 \right]
θ=[24K2ω0ω024K2ω0ω0+8K2ω0ω012K3]=8K2ω0ω012K3=2ω0ω03K\therefore \theta =\left[ \dfrac{24{{K}^{2}}{{\omega }_{0}}\sqrt{{{\omega }_{0}}}-24{{K}^{2}}{{\omega }_{0}}\sqrt{{{\omega }_{0}}}+8{{K}^{2}}{{\omega }_{0}}\sqrt{{{\omega }_{0}}}}{12{{K}^{3}}} \right]=\dfrac{8{{K}^{2}}{{\omega }_{0}}\sqrt{{{\omega }_{0}}}}{12{{K}^{3}}}=\dfrac{2{{\omega }_{0}}\sqrt{{{\omega }_{0}}}}{3K}
Therefore, total angular rotation θ=2ω0ω03K\theta =\dfrac{2{{\omega }_{0}}\sqrt{{{\omega }_{0}}}}{3K} --(8)

Now, from (5), total time of rotation T=2ω0KT=\dfrac{2\sqrt{{{\omega }_{0}}}}{K}.

Now, since, Mean angular velocity = Total angular rotation covered by a bodytotal time taken\text{Mean angular velocity = }\dfrac{\text{Total angular rotation covered by a body}}{\text{total time taken}}-(9)

Putting (8) and (5) in (9), we get,

ω=2ω0ω03K2ω0K=ω03\left\langle \omega \right\rangle =\dfrac{\dfrac{2{{\omega }_{0}}\sqrt{{{\omega }_{0}}}}{3K}}{\dfrac{2\sqrt{{{\omega }_{0}}}}{K}}=\dfrac{{{\omega }_{0}}}{3}
Now, comparing with the relation given in the question,
ω0x=ω03\dfrac{{{\omega }_{0}}}{x}=\dfrac{{{\omega }_{0}}}{3}

x=3\therefore x=3

Therefore, the value of xx is 3.

Note: Students must take note that the angular deceleration given in the question is not constant. Many students cannot catch this point and proceed using the equations of rotational motion which are applicable only for uniform motion with constant angular acceleration (or deceleration). This leads to them solving the question completely but arriving at the wrong answer.
The correct way to solve this question is the process given above where one has to find out the instantaneous angular acceleration (which is changing with time and in this case angular velocity) and integrate it to find a relation for the instantaneous angular velocity and again integrate it with respect to time to get the total angular rotation.
If one proceeds by considering the angular acceleration to be constant, the question will be solved very easily however, the answer will be completely wrong.