Solveeit Logo

Question

Physics Question on Thermodynamics

A solid body of constant heat capacity 1J/C1 \, J/^{\circ}C is being heated by keeping it in contact with reservoirs in two ways (i) Sequentially keeping in contact with 22 reservoirs such that each reservoir supplies same amount of heat. (ii) Sequentially keeping in contact with 88 reservoirs such that each reservoir supplies same amount of heat. In both the cases, body is brought from initial temperature 100C100^{\circ}C to final temperature 200C200^{\circ}C. Entropy change of the body in the two cases respectively, is

A

In (2), In 2

B

In 2, 2 ln 2

C

2 ln 2, 8 In 2

D

In 2,4 In 2

Answer

In (2), In 2

Explanation

Solution

(i) ΔS1=dQT=ms100150dTT+ms150200dTT\Delta S _{1}=\int \frac{ dQ }{ T }= ms \displaystyle\int_{100}^{150} \frac{ d T }{ T }+ ms \displaystyle\int_{150}^{200} \frac{ d T }{ T }
=ln(150100)+ln(200150)=\ln \left(\frac{150}{100}\right)+\ln \left(\frac{200}{150}\right)
=ln(32)+ln43=\ln \left(\frac{3}{2}\right)+\ln \frac{4}{3}
ΔS1=ln2\Delta S _{1}=\ln 2
(ii) Δs2=dQT=100112.5dQT+112.5125dQT+\Delta s _{2}=\int \frac{ dQ }{ T }=\displaystyle\int_{100}^{112.5} \frac{ dQ }{ T }+\displaystyle\int_{112.5}^{125} \frac{ dQ }{ T }+\ldots \ldots
=ln(112.5100)+ln(125112.5)+..=\ln \left(\frac{112.5}{100}\right)+\ln \left(\frac{125}{112.5}\right)+\ldots . .
=ln(98)+ln(109)+ln(1615)=\ln \left(\frac{9}{8}\right)+\ln \left(\frac{10}{9}\right)+\ln \left(\frac{16}{15}\right)
=ln(168)=ln2=\ln \left(\frac{16}{8}\right)=\ln 2