Solveeit Logo

Question

Question: A solid ball of mass m is allowed to fall from a height h to a pan suspended with a spring of spring...

A solid ball of mass m is allowed to fall from a height h to a pan suspended with a spring of spring constant k. Assume the ball does not rebound and pan is massless, then amplitude of the oscillation is –

A

mgk\frac{mg}{k}

B

mgk\frac{mg}{k} + (2hkmg)1/2\left( \frac{2hk}{mg} \right)^{1/2}

C

mg 1+1+2hkmg\sqrt{1 + \frac{1 + 2hk}{mg}}

D

mgk\frac { \mathrm { mg } } { \mathrm { k } } [1+1+2hkmg]\left\lbrack 1 + \sqrt{1 + \frac{2hk}{mg}} \right\rbrack

Answer

\frac { \mathrm { mg } } { \mathrm { k } }$$\left\lbrack 1 + \sqrt{1 + \frac{2hk}{mg}} \right\rbrack

Explanation

Solution

mg (h + x) = 12\frac{1}{2}kx2 ⇒ x2(2mgk)\left( \frac{2mg}{k} \right)x–2mghk\frac{2mgh}{k} = 0

⇒ x = mgk\frac{mg}{k} + mgk\frac{mg}{k} (1+2hkmg)1/2\left( 1 + \frac{2hk}{mg} \right)^{1/2}