Solveeit Logo

Question

Question: A solid ball of mass m is allowed to fall from a height h to a pan suspended with a spring of spring...

A solid ball of mass m is allowed to fall from a height h to a pan suspended with a spring of spring constant k. Assume the ball does not rebound and pan is massless, then amplitude of the oscillation is

A

mgk\frac { m g } { k }

B

mgk+(2hkmg)1/2\frac { m g } { k } + \left( \frac { 2 h k } { m g } \right) ^ { 1 / 2 }

C

mg1+1+2hkmgm g \sqrt { 1 + \frac { 1 + 2 h k } { m g } }

D

mgk[1+1+2hkmg]\frac { m g } { k } \left[ 1 + \sqrt { 1 + \frac { 2 h k } { m g } } \right]

Answer

mgk[1+1+2hkmg]\frac { m g } { k } \left[ 1 + \sqrt { 1 + \frac { 2 h k } { m g } } \right]

Explanation

Solution

mg (h + x) =-12\frac { 1 } { 2 } kx2

or x2-(2mgk)x2mghk\left( \frac { 2 m g } { k } \right) x - \frac { 2 m g h } { k } = 0

or x =mgk+mgk1+2hkmg\frac { m g } { k } + \frac { m g } { k } \sqrt { 1 + \frac { 2 h k } { m g } }