Solveeit Logo

Question

Question: A solenoid of length 50cm with 20 turns per centimeter and area of cross section \[40\;{\text{c}}{{\...

A solenoid of length 50cm with 20 turns per centimeter and area of cross section 40  cm240\;{\text{c}}{{\text{m}}^2}square completely surrounds another coaxial solenoid of the same length, area of the cross section 25  cm225\;{\text{c}}{{\text{m}}^{\text{2}}} with 2525 turns per centimeter calculate the mutual inductance of the system.
(A) 9.78  mH9.78\;{\text{mH}}
(B) 7.85  mH7.85\;{\text{mH}}.
(C) 8.90  mH8.90\;{\text{mH}}.
(D) 6.8  mH6.8\;{\text{mH}}.

Explanation

Solution

In this question, we need to find the expression for the mutual inductance of the system. We know that the mutual induction depends on the number of turns, area of cross-section, and the length of the conductor then substitute all the values in the expression to calculate the mutual inductance of the system.

Complete step by step answer:
We are given a solenoid of length 50  cm50\;{\text{cm}} and the area of cross section of solenoid is 40  cm240\;{\text{c}}{{\text{m}}^2} and that is having 2020 turns per centimeter. An area of similar solenoid is 25  cm225\;{\text{c}}{{\text{m}}^{\text{2}}} and that is having the same length with 2525 turns per centimeter.
Consider all the given values and assume that r1{r_1} be the radii of 1st{1^{{\text{st}}}} solenoid and r2{r_2} be the radii of 2nd{2^{{\text{nd}}}} solenoid.
And assuming n1{n_1} be the number of turns of 1st{1^{{\text{st}}}} solenoid and n2{n_2} be the number of turns of 2nd{2^{{\text{nd}}}} solenoid and N1{N_{\text{1}}} be the total no of turns and 1st{1^{{\text{st}}}} solenoid N2{N_{\text{2}}} be the total no of turns 2nd{2^{{\text{nd}}}} solenoids and each of length ll.
The mutual inductance between the two solenoids is the interaction of 1st{1^{{\text{st}}}} solenoid magnetic field on another solenoid because of this interaction it induces of unit current flowing in the 2nd{2^{{\text{nd}}}} solenoid.
The 2nd{2^{{\text{nd}}}}solenoids carry current I2{I_{\text{2}}}.So, the current sets up magnetic flux ϕ1{\phi _1} through the 1st{1^{{\text{st}}}} solenoid.
Write the expression for the total flux.
N1ϕ1=M12I2{N_1}{\phi _1} = {{\text{M}}_{12}}{I_2}
Where, M12{{\text{M}}_{12}} is the mutual inductance of the 1st{1^{{\text{st}}}} solenoid with respect to 2nd{2^{{\text{nd}}}} solenoid.
The total flux linkages with the 1st{1^{{\text{st}}}} solenoid,
M12=μ0n1n2A2l\Rightarrow {{\text{M}}_{12}} = {\mu _0}{n_1}{n_2}{A_2}l
M12=M21\Rightarrow {{\text{M}}_{12}} = {{\text{M}}_{21}}
The total flux of the 1st{1^{{\text{st}}}} solenoid is equal to the total flux of 2nd{2^{{\text{nd}}}} solenoid.
Converting the values into standard units,
l1=50  cm\Rightarrow {l_1} = {\text{50}}\;{\text{cm}}
l1=50  cm(1  m100  cm)\Rightarrow {l_1} = {\text{50}}\;{\text{cm}}\left( {\dfrac{{1\;{\text{m}}}}{{{\text{100}}\;{\text{cm}}}}} \right)
l1=50×10 - 2  m\Rightarrow {l_1} = {{50 \times 1}}{{\text{0}}^{{\text{ - 2}}}}\;{\text{m}}
n1=2000  turns per meter{n_{\text{1}}} = {\text{2000}}\;{\text{turns per meter}}
A1=40×104  m2\Rightarrow {A_{\text{1}}} = {{40 \times 1}}{{\text{0}}^{ - {\text{4}}}}\;{{\text{m}}^{\text{2}}}
n2=2500  turns per meter{n_{\text{2}}} = {\text{2500}}\;{\text{turns per meter}}
A2=2.5×104  m2\Rightarrow {A_{\text{2}}} = {\text{2}}{{.5 \times 1}}{{\text{0}}^{ - {\text{4}}}}\;{{\text{m}}^{\text{2}}}

M12=μ0n1n2A2l\Rightarrow {{\text{M}}_{12}} = {\mu _0}{n_1}{n_2}{A_2}l
Substituting the corresponding values,
M12=4(3.14×107)(2000)×(2500)(50×102)(25×104)\Rightarrow {{\text{M}}_{{\text{12}}}} = 4\left( {3.14 \times {{10}^{ - 7}}} \right)\left( {2000} \right) \times \left( {2500} \right)\left( {50 \times {{10}^{ - 2}}} \right)\left( {25 \times {{10}^{ - 4}}} \right)
On simplification,
M12=(12.56×1014)(2000)(2500)(50)(25×102)(104)\Rightarrow {{\text{M}}_{{\text{12}}}} = \left( {12.56 \times {{10}^{ - 14}}} \right)\left( {2000} \right)\left( {2500} \right)\left( {50} \right)\left( {25 \times {{10}^{ - 2}}} \right)\left( {{{10}^{ - 4}}} \right)
On further simplification,
M12=7.85  mH\Rightarrow {{\text{M}}_{{\text{12}}}} = {\text{7}}{\text{.85}}\;{\text{mH}}

Therefore, the mutual inductance of the system is 7.85  mH{\text{7}}{\text{.85}}\;{\text{mH}}. So, option (B) is correct.

Note:
We need to be careful about the units of the given variables, first convert all the values into a standard unit that is from centimeter to meter. Do not substitute values without converting the units into the standard units.