Solveeit Logo

Question

Question: A solenoid of length 0.4 m and having 500 turns of wire carries a current of 3 amp. If the torque re...

A solenoid of length 0.4 m and having 500 turns of wire carries a current of 3 amp. If the torque required to hold a coil (having radius 0.02 cm, current 2A and turns 50) in the middle of the solenoid with its axis perpendicular to the axis of the solenoid 3x×107\frac{3}{x} \times 10^{-7} Nm, find x. (Take π2=10\pi^2 = 10)

A

5

B

10

C

2

D

1

Answer

5

Explanation

Solution

The magnetic field (BB) inside a long solenoid is given by B=μ0nIs=μ0NsLIsB = \mu_0 n I_s = \mu_0 \frac{N_s}{L} I_s. The magnetic dipole moment (MM) of the coil is given by M=NcIcAc=NcIcπrc2M = N_c I_c A_c = N_c I_c \pi r_c^2. The torque (τ\tau) on a magnetic dipole in a magnetic field is τ=MBsinθ\tau = MB \sin\theta. Given that the coil's axis is perpendicular to the solenoid's axis, θ=90\theta = 90^\circ, so sinθ=1\sin\theta = 1, and τ=MB\tau = MB.

Given values: Solenoid: L=0.4L = 0.4 m, Ns=500N_s = 500, Is=3I_s = 3 A. μ0=4π×107\mu_0 = 4\pi \times 10^{-7} Tm/A. Coil: rc=0.02r_c = 0.02 cm =2×104= 2 \times 10^{-4} m, Nc=50N_c = 50, Ic=2I_c = 2 A. Torque: τ=3x×107\tau = \frac{3}{x} \times 10^{-7} Nm. Approximation: π2=10\pi^2 = 10.

  1. Magnetic field (BB) of the solenoid: B=(4π×107)×5000.4×3=4π×107×1250×3=15000π×107=1.5π×103B = (4\pi \times 10^{-7}) \times \frac{500}{0.4} \times 3 = 4\pi \times 10^{-7} \times 1250 \times 3 = 15000\pi \times 10^{-7} = 1.5\pi \times 10^{-3} T.

  2. Magnetic dipole moment (MM) of the coil: Area of the coil Ac=πrc2=π(2×104)2=4π×108A_c = \pi r_c^2 = \pi (2 \times 10^{-4})^2 = 4\pi \times 10^{-8} m2^2. M=50×2×(4π×108)=400π×108=4π×106M = 50 \times 2 \times (4\pi \times 10^{-8}) = 400\pi \times 10^{-8} = 4\pi \times 10^{-6} Am2^2.

  3. Torque (τ\tau) on the coil: τ=MB=(4π×106)×(1.5π×103)=6π2×109\tau = MB = (4\pi \times 10^{-6}) \times (1.5\pi \times 10^{-3}) = 6\pi^2 \times 10^{-9} Nm. Using π2=10\pi^2 = 10: τ=6×10×109=60×109=6×108\tau = 6 \times 10 \times 10^{-9} = 60 \times 10^{-9} = 6 \times 10^{-8} Nm.

  4. Solve for x: 6×108=3x×1076 \times 10^{-8} = \frac{3}{x} \times 10^{-7} x=3×1076×108=36×101=0.5×10=5x = \frac{3 \times 10^{-7}}{6 \times 10^{-8}} = \frac{3}{6} \times 10^1 = 0.5 \times 10 = 5.