Question
Question: A solenoid of length 0.4 m and having 500 turns of wire carries a current of 3 amp. If the torque re...
A solenoid of length 0.4 m and having 500 turns of wire carries a current of 3 amp. If the torque required to hold a coil (having radius 0.02 cm, current 2A and turns 50) in the middle of the solenoid with its axis perpendicular to the axis of the solenoid x3×10−7 Nm, find x. (Take π2=10)

5
10
2
1
5
Solution
The magnetic field (B) inside a long solenoid is given by B=μ0nIs=μ0LNsIs. The magnetic dipole moment (M) of the coil is given by M=NcIcAc=NcIcπrc2. The torque (τ) on a magnetic dipole in a magnetic field is τ=MBsinθ. Given that the coil's axis is perpendicular to the solenoid's axis, θ=90∘, so sinθ=1, and τ=MB.
Given values: Solenoid: L=0.4 m, Ns=500, Is=3 A. μ0=4π×10−7 Tm/A. Coil: rc=0.02 cm =2×10−4 m, Nc=50, Ic=2 A. Torque: τ=x3×10−7 Nm. Approximation: π2=10.
-
Magnetic field (B) of the solenoid: B=(4π×10−7)×0.4500×3=4π×10−7×1250×3=15000π×10−7=1.5π×10−3 T.
-
Magnetic dipole moment (M) of the coil: Area of the coil Ac=πrc2=π(2×10−4)2=4π×10−8 m2. M=50×2×(4π×10−8)=400π×10−8=4π×10−6 Am2.
-
Torque (τ) on the coil: τ=MB=(4π×10−6)×(1.5π×10−3)=6π2×10−9 Nm. Using π2=10: τ=6×10×10−9=60×10−9=6×10−8 Nm.
-
Solve for x: 6×10−8=x3×10−7 x=6×10−83×10−7=63×101=0.5×10=5.