Solveeit Logo

Question

Question: A Smooth ring of Mass 'M' is threaded on a string as shown in the figure. Various portions of string...

A Smooth ring of Mass 'M' is threaded on a string as shown in the figure. Various portions of strings are vertical. What is the condition if the ring alone is to remain at rest –

A

4M\frac { 4 } { \mathrm { M } } = 1 m\frac { 1 } { \mathrm {~m} } + 1 m\frac { 1 } { \mathrm {~m} ^ { \prime } }

B

2M\frac { 2 } { M } = 1 m\frac { 1 } { \mathrm {~m} } + 1 m\frac { 1 } { \mathrm {~m} ^ { \prime } }

C

1M\frac { 1 } { \mathrm { M } } = 1 m\frac { 1 } { \mathrm {~m} } + 1 m\frac { 1 } { \mathrm {~m} ^ { \prime } }

D

3M\frac { 3 } { M } = 1 m\frac { 1 } { \mathrm {~m} } + 1 m\frac { 1 } { \mathrm {~m} ^ { \prime } }

Answer

4M\frac { 4 } { \mathrm { M } } = 1 m\frac { 1 } { \mathrm {~m} } + 1 m\frac { 1 } { \mathrm {~m} ^ { \prime } }

Explanation

Solution

Since 'M' is at rest the tension in the string = Mg2\frac { \mathrm { Mg } } { 2 } Let acceleration of m and m' is 'f' one will move downward and other will move upward

mg – Mg2\frac { \mathrm { Mg } } { 2 } = mf ……..(i)

Mg2\frac { \mathrm { Mg } } { 2 } – m'g = m'f …….(ii)

Solving equation (i) and (ii)

4M\frac { 4 } { \mathrm { M } } = 1 m\frac { 1 } { \mathrm {~m} } +