Solveeit Logo

Question

Physics Question on Friction

A smooth block is released at rest on a 4545^{\circ} incline and then slides a distance dd. The time taken to slide is nn times as much to slide on rough incline than on a smooth incline. The coefficient of friction is

A

μk=11n2\mu_{k}=1-\frac{1}{n^{2}}

B

μk=11n2\mu_{k}=\sqrt{1-\frac{1}{n^{2}}}

C

μs=11n2\mu_{s}=1-\frac{1}{n^{2}}

D

μs=11n2\mu_{s}=\sqrt{1-\frac{1}{n^{2}}}

Answer

μk=11n2\mu_{k}=1-\frac{1}{n^{2}}

Explanation

Solution

When friction is absent a1=gsinθa_{1}=g \sin \theta s1=12a1t12\therefore s_{1}=\frac{1}{2} a_{1} t_{1}^{2} ... (i) When friction is present a2=gsinθμkgcosθa_{2} =g \sin \theta-\mu_{k} g \cos \theta s2=12a2t22\therefore s_{2} =\frac{1}{2} a_{2} t_{2}^{2}...(ii) From Eqs. (i) and (ii) 12a1t12=12a2t22\frac{1}{2} a_{1} t_{1}^{2}=\frac{1}{2} a_{2} t_{2}^{2} or a1t12=a2(nt1)2a_1 t_1^2 = a_2( nt_1)^2 (t2=nt1)\left(\because t_{2}=n t_{1}\right) or a1=n2a2a_{1}=n^{2} a_{2} or a2a1=gsinθμkgcosθgsinθ=1n2 \frac{a_{2}}{a_{1}}=\frac{g \sin \theta-\mu_{k} g \cos \theta}{g \sin \theta}=\frac{1}{n^{2}} or gsin45μkgcos45gsin45=1n2 \frac{g \sin 45^{\circ}-\mu_{k} g \cos 45^{\circ}}{g \sin 45^{\circ}}=\frac{1}{n^{2}} or 1μk=1n21-\mu_{k}=\frac{1}{n^{2}} or μk=11n2\mu_{k}=1-\frac{1}{n^{2}}