Solveeit Logo

Question

Physics Question on laws of motion

A smooth block is released at rest on a 45^{\circ} incline and then slides a distance dd. The time taken to slide is nn times as much to slide on rough incline than on a smooth incline. The coefficient of friction is

A

μk=11n2\mu_k = 1 - \frac{1}{n^2}

B

μk=11n2\mu_k = \sqrt{1- \frac{1}{n^2}}

C

μs=11n2\mu_s = 1 - \frac{1}{n^2}

D

μs=11n2\mu_s = \sqrt{1- \frac{1}{n^2}}

Answer

μk=11n2\mu_k = 1 - \frac{1}{n^2}

Explanation

Solution

When friction is absent
a1=gsinθ\, \, \, \, \, \, \, \, \, \, a_1 = g \sin \, \theta
s1=12a1t12\therefore \, \, \, \, \, \, \, \, s_1 = \frac{1}{2 } a_1t_1^2 \, \, \, \, \, \, \, \, \, \, \, \, ...(i)
Whrn friction is present
a2=gsinθμkgcosθ\, \, \, \, \, \, \, \, \, \, \, a_2 = g \sin \, \theta - \mu_kg \cos \theta

s2=12a2t22\therefore \, \, \, \, \, \, \, \, \, \, s_2 = \frac{1}{2 a_2 t^2_2} \, \, \, \, \, \, \, \, \, \, \, ...(ii)
From Eqs. (i) and (ii)
or 12a1t12=12a2t12(t2=nt1) \, \, \, \, \, \, \, \, \, \, \, \, \frac{1}{2} a_1t^2_1 = \frac{1}{2} a_2t^2_1 \, \, \, \, \, \because (t_2 = nt_1)
or a1=n2a2\, \, \, \, \, \, \, \, a_1 = n^2 a_2
a2a1=gsinθμkgcosθgsinθ=1n2\, \, \, \, \, \, \, \, \frac{a_2}{a_1} = \frac{g \sin \theta - \mu_k g \cos \theta}{g \sin \theta } = \frac{1}{n^2}
or gsin45μkgcos45gsin45=1n2 \, \, \, \, \, \, \, \, \frac{g \sin \, 45^\circ - \mu_k g \cos \, 45^\circ}{g \, \sin \, 45^\circ } = \frac{1}{n^2}
or 1μk=1n2\, \, \, \, \, \, \, \, \, \, \, \, \, \, 1 - \mu_k = \frac{1}{n^2} or μk=11n2\mu_k = 1 - \frac{1}{n^2}