Solveeit Logo

Question

Physics Question on Electromagnetic induction

A small square loop of wire of side \ell is placed inside a large square loop of wire of side LL ( L=2L = \ell^2 ). The loops are coplanar and their centers coincide.The value of the mutual inductance of the system is x×107H\sqrt{x} \times 10^{-7} \, \text{H}, where x=x = _____.

Answer

Flux linkage for inner loop:

ϕ=Bcenter2\phi = B_{\text{center}} \cdot \ell^2 =4×μ0i4π(sin45+sin45)2= 4 \times \frac{\mu_0 i}{4\pi} \left( \sin 45^\circ + \sin 45^\circ \right) \ell^2 ϕ=22μ0i2πL\phi = \frac{2\sqrt{2} \mu_0 i \ell^2}{\pi L}

Mutual inductance:

M=ϕi=22μ02πL=22μ0πM = \frac{\phi}{i} = \frac{2\sqrt{2} \mu_0 \ell^2}{\pi L} = \frac{2\sqrt{2} \mu_0}{\pi}

Calculating:

M=22×4ππ×107M = \frac{2\sqrt{2} \times 4\pi}{\pi} \times 10^{-7} =82×107H= 8\sqrt{2} \times 10^{-7} \, \text{H} =128×107H= \sqrt{128} \times 10^{-7} \, \text{H}

Thus:

x=128x = 128