Solveeit Logo

Question

Physics Question on mechanical properties of fluid

A small spherical ball falling through a viscous medium of negligible density has terminal velocity vv. Another ball of the same mass but of radius twice that of the earlier falling through the same viscous medium will have terminal velocity

A

vv

B

v/4v/4

C

1:41:4

D

1:641:64

Answer

1:41:4

Explanation

Solution

Terminal velocity of the ball through a viscous medium
v=29×gη(ρσ)r2v=\frac{2}{9}\times \frac{g}{\eta }(\rho -\sigma ){{r}^{2}}
Or v=29×gη(ρ)r2v=\frac{2}{9}\times \frac{g}{\eta }(\rho ){{r}^{2}}
Because for viscous medium of negligible density
(σ=0)(\sigma =0) \therefore
v=29×gη×m43πr3×r2v=\frac{2}{9}\times \frac{g}{\eta }\times \frac{m}{\frac{4}{3}\pi {{r}^{3}}}\times {{r}^{2}}
[ρ=m43πr3]\left[ \because \rho =\frac{m}{\frac{4}{3}\pi {{r}^{3}}} \right]
Or v=29×gη×m43πrv=\frac{2}{9}\times \frac{g}{\eta }\times \frac{m}{\frac{4}{3}\pi r}
\Rightarrow v1rv\propto \frac{1}{r}
For the second ball v12rv\propto \frac{1}{2r}
\therefore vv=2rr\frac{v}{v}=\frac{2r}{r} Or v=v2v=\frac{v}{2}