Solveeit Logo

Question

Physics Question on Gravitation

A small satellite is in elliptical orbit around the earth as shown in figure. LL denotes the magnitude of its angular momentum and KK denotes its kinetic energy. If 11 and 22 denote two positions of the satellite, then

A

L2=L1L_{2} = L_{1} , k2=k1k_{2} = k_{1}

B

L2=L1L_{2} = L_{1} , k2>k1k_{2} > \, k_{1}

C

L2>L1L_{2} > \, L_{1} , k2<k1k_{2} < \, k_{1}

D

L2=L1L_{2}= L_{1} , k2<k1k_{2} < \, k_{1}

Answer

L2=L1L_{2} = L_{1} , k2>k1k_{2} > \, k_{1}

Explanation

Solution

By Kepler's law, when a satellite is moving around the earth on elliptical path, then its angular momentum remains constant
i.e. L1=L2L_{1}=L_{2}
m1v1r1=m2v2r2m_{1}v_{1}r_{1}=m_{2}v_{2}r_{2}
But, m1=m2=mm_{1}=m_{2}=m
v1r1=v2r2\therefore v_{1}r_{1}=v_{2}r_{2}
r1r2=v2v1(i)\frac{r_{1}}{r_{2}}=\frac{v_{2}}{v_{1}}\ldots\left(i\right)
Here, r1>r2r_{1}>\,r_{2}
r1r2>1\frac{r_{1}}{r_{2}}>\,1
\therefore From E (i)\left(i\right),
v2v1>1\frac{v_{2}}{v_{1}}>\,1
v2>v1v_{2}>\,v_{1}
v22>v12v_{2}^{2}>\,v_{1}^{2} or 12mv22>12mv12\frac{1}{2}mv_{2}^{2}>\,\frac{1}{2}mv_{1}^{2}
K2>K1K_{2}>\,K_{1} (K=12mv2)(\because K=\frac{1}{2}mv^{2})