Solveeit Logo

Question

Question: A small planet is revolving around a very massive star in a circular orbit of radius R with a period...

A small planet is revolving around a very massive star in a circular orbit of radius R with a period of revolution T. If the gravitational force between the planet and the star were proportional to R5/2\mathrm { R } ^ { - 5 / 2 } then T would be proportional to

A

B

R3/5\mathrm { R } ^ { 3 / 5 }

C

R7/2\mathrm { R } ^ { 7 / 2 }

D

R7/4\mathrm { R } ^ { 7 / 4 }

Answer

R7/4\mathrm { R } ^ { 7 / 4 }

Explanation

Solution

According to the questions, the gravitational force between the planet and the star is

F=1R5/2\mathrm { F } = \frac { 1 } { \mathrm { R } ^ { 5 / 2 } } F=GMmR5/2\therefore \mathrm { F } = \frac { \mathrm { GMm } } { \mathrm { R } ^ { 5 / 2 } }

Where M and m be masses of star and planet respectively.

For motions of a planet in a circular orbit.

mRω2=GMmR5/2\mathrm { mR } \omega ^ { 2 } = \frac { \mathrm { GMm } } { \mathrm { R } ^ { 5 / 2 } }

mR(2πT)2=GMmR5/2\mathrm { mR } \left( \frac { 2 \pi } { \mathrm { T } } \right) ^ { 2 } = \frac { \mathrm { GMm } } { \mathrm { R } ^ { 5 / 2 } }