Solveeit Logo

Question

Physics Question on Oscillations

A small mass mm attached to one end of a spring with a negligible mass and an unstretched length LL, executes vertical oscillations with angular frequency ω0\omega_0. When the mass is rotated with an angular speed ω\omega by holding the other end of the spring at a fixed point, the mass moves uniformly in a circular path in a horizontal plane. Then the increase in length of the spring during this rotation is

A

ω2Lω02ω2\frac{\omega^{2}L}{\omega^{2}_{0}-\omega^{2}}

B

ω02Lω2ω02\frac{\omega^{2}_{0}L}{\omega^{2}-\omega_{0}^{2}}

C

ω2Lω02\frac{\omega^{2}L}{\omega_{0}^{2}}

D

ω02Lω2\frac{\omega_{0}^{2}L}{\omega^{2}}

Answer

ω2Lω02ω2\frac{\omega^{2}L}{\omega^{2}_{0}-\omega^{2}}

Explanation

Solution

The given situation can be shown as

From figure, Kxsinθ=mω2(L+x)sinθK x \sin \theta=m \omega^{2}(L+x) \sin \theta
Kx=mω2(L+x)\Rightarrow K x=m \omega^{2}(L+x)
Also, Km=ω0 \sqrt{\frac{K}{m}}=\omega_{0}
K=mω02\Rightarrow K=m \omega_{0}^{2}
Substituting the value in E (i)
mω02x=mω2(L+x)m \omega_{0}^{2} x=m \omega^{2}(L+x)
x=ω2Lω02ω2\Rightarrow x=\frac{\omega^{2} L}{\omega_{0}^{2}-\omega^{2}}