Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

A small conducting sphere of radius rr is lying concentrically inside a bigger hollow conducting sphere of radius RR. The bigger and smaller spheres are charged with QQ and q(Q>q)q (Q > q) and are insulated from each other. The potential difference between the spheres will be

A

14πϵ0(QRqr)\frac {1}{4\pi\epsilon_0} \left(\frac {Q}{R}-\frac {q}{r}\right)

B

14πϵ0(qRQr)\frac {1}{4\pi\epsilon_0} \left(\frac {q}{R}-\frac {Q}{r}\right)

C

14πϵ0(qrQR)\frac {1}{4\pi\epsilon_0} \left(\frac {q}{r}-\frac {Q}{R}\right)

D

14πϵ0(qrqR)\frac {1}{4\pi\epsilon_0} \left(\frac {q}{r}-\frac {q}{R}\right)

Answer

14πϵ0(qrqR)\frac {1}{4\pi\epsilon_0} \left(\frac {q}{r}-\frac {q}{R}\right)

Explanation

Solution

The potential V1V_{1} of smaller sphere is given by
V1=14πε0qr+14πε0QR....(i)V_{1}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{r}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q}{R}\,\,\,\,\,\,\,\,\,....(i)
The potential V2V_{2} of bigger sphere is given by

So, the potential difference between the plates
V=V1V2V=V_{1}-V_{2}
or V=14πε0qr+14πε0QR14πε0QR14πε0qR\,\,\, V =\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{r}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q}{R}-\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{Q}{R}-\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{R}
=14πε0qr14πε0qR=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}-\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{R}
=14πε0(qrqR)=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{r}-\frac{q}{R}\right)