Solveeit Logo

Question

Question: A small box of mass $m = 0.1$ kg is kept on a top of a frictionless ramp with a spring at height $h_...

A small box of mass m=0.1m = 0.1 kg is kept on a top of a frictionless ramp with a spring at height h2=0.5h_2 = 0.5 m from a horizontal table. The ramp is angled at θ=30\theta = 30^\circ to the horizontal on a table that is h1=4h_1 = 4 m above the floor. If the spring is pushed down by Δx=0.3\Delta x = 0.3 m compared to its rest length, the box leaves the ramp at a speed vv m/s and lands at a distance Δd\Delta d meters away from the table.

[Given: Spring constant k=6k = 6 N m1^{-1}, acceleration due to gravity g=10g = 10 m s2^{-2}; Assume friction is negligible]

Answer

Q.9: 1.55 Q.10: 1.38

Explanation

Solution

Q.9: We use the principle of conservation of energy to find the speed vv of the box when it leaves the ramp.

Initial energy:
Spring potential energy Usi=12k(Δx)2U_{si} = \frac{1}{2}k(\Delta x)^2

Final energy:
Kinetic energy Kf=12mv2K_f = \frac{1}{2}mv^2
Gravitational potential energy Ugf=mg(Δxsinθ)U_{gf} = mg(\Delta x \sin\theta)

By conservation of energy: 12k(Δx)2=12mv2+mg(Δxsinθ)\frac{1}{2}k(\Delta x)^2 = \frac{1}{2}mv^2 + mg(\Delta x \sin\theta)
v2=k(Δx)2m2gΔxsinθv^2 = \frac{k(\Delta x)^2}{m} - 2g \Delta x \sin\theta

Given values: m=0.1m = 0.1 kg, k=6k = 6 N m1^{-1}, Δx=0.3\Delta x = 0.3 m, g=10g = 10 m s2^{-2}, θ=30\theta = 30^\circ.
sinθ=sin30=12\sin\theta = \sin 30^\circ = \frac{1}{2}.
v2=6×(0.3)20.12×10×0.3×12=5.43=2.4v^2 = \frac{6 \times (0.3)^2}{0.1} - 2 \times 10 \times 0.3 \times \frac{1}{2} = 5.4 - 3 = 2.4
v=2.41.55v = \sqrt{2.4} \approx 1.55 m/s

Q.10: The box leaves the ramp at a speed v=2.4v = \sqrt{2.4} m/s at an angle θ=30\theta = 30^\circ above the horizontal. The initial height of the box above the floor is H=h1+h2=4+0.5=4.5H = h_1 + h_2 = 4 + 0.5 = 4.5 m.

Initial velocity components:
vx=vcosθ=2.4cos30=2.4×32=1.8v_x = v \cos\theta = \sqrt{2.4} \cos 30^\circ = \sqrt{2.4} \times \frac{\sqrt{3}}{2} = \sqrt{1.8} m/s
vy=vsinθ=2.4sin30=2.4×12=0.6v_y = v \sin\theta = \sqrt{2.4} \sin 30^\circ = \sqrt{2.4} \times \frac{1}{2} = \sqrt{0.6} m/s

The horizontal distance is Δd=vx×t\Delta d = v_x \times t, where tt is the time of flight.
The vertical motion is described by yf=y0+vy0t+12ayt2y_f = y_0 + v_{y0}t + \frac{1}{2}a_yt^2.
Here, y0=H=4.5y_0 = H = 4.5 m, yf=0y_f = 0, vy0=vy=0.6v_{y0} = v_y = \sqrt{0.6} m/s, ay=g=10a_y = -g = -10 m/s2^2.
0=4.5+0.6t5t20 = 4.5 + \sqrt{0.6}t - 5t^2
5t20.6t4.5=05t^2 - \sqrt{0.6}t - 4.5 = 0

Using the quadratic formula t=b±b24ac2at = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}:
a=5a = 5, b=0.6b = -\sqrt{0.6}, c=4.5c = -4.5
t=0.6±(0.6)24(5)(4.5)2(5)=0.6+90.6101.0293t = \frac{\sqrt{0.6} \pm \sqrt{(-\sqrt{0.6})^2 - 4(5)(-4.5)}}{2(5)} = \frac{\sqrt{0.6} + \sqrt{90.6}}{10} \approx 1.0293

Now, calculate Δd=vx×t=1.8×0.6+90.6101.38101.38\Delta d = v_x \times t = \sqrt{1.8} \times \frac{\sqrt{0.6} + \sqrt{90.6}}{10} \approx 1.3810 \approx 1.38 m